Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Plays Unexpected Role in Embryonic Stem Cells

22.06.2015

What if you found out that pieces of your front door were occasionally flying off the door frame to carry out chores around the house? That’s the kind of surprise scientists at the Salk Institute experienced with their recent discovery that nucleoporins—proteins that act as cellular “doorways” to help manage what goes in and out of a cell’s nucleus—are actually much bigger players in expressing genes than previously thought.

The finding, published June 16,2015 in the journal Genes & Development, shows that nucleoporins play an important role in maintaining embryonic stem cells before they begin to develop into specific tissues. This discovery gives a new understanding to genetic diseases that are caused by mutations in these proteins. One nucleoporin protein in particular has a dramatic—and unanticipated—function in the formation of neurons from stem cells.


Salk Institute

Scientists discovered that a protein called Nup153 (green) control how embryonic stem cells (blue) develop. When Salk scientists deleted Nup153 (left), the cells were free to rapidly begin to turn into the precursors of neurons (marked in red), suggesting a previously unknown role for Nup153.

“We’ve shone a new light on this class of proteins,” says Martin Hetzer, a professor in Salk’s Molecular and Cell Biology Laboratory and senior author of the new paper. “I hope researchers start to accept and realize that nucleoporins are more than just transport proteins.”

Nucleoporins—of which there are about 30 versions—are typically part of nuclear pore complexes, giant structures that connect the inside of a cell’s nucleus to the outer cytoplasm. In 2010, Hetzer’s team first uncovered hints that nucleoporins may also have a role in regulating the timing of when genes inside the nucleus are transcribed into proteins during a cell’s development. But exactly what that role might be was unclear.

In the new work, Hetzer and his colleagues focused on one particular nucleoporin called Nup153, which is known to rapidly move on and off of the nuclear pore complex, suggesting it might be doing something other than providing structural support to the pore.

The researchers turned to mouse embryonic stem cells—cells that have the potential to differentiate into any cell type in the body—and deleted Nup153. They expected that if Nup153 played a key role in cell differentiation, then removing it from stem cells would stop them from differentiating. Instead, the opposite happened.

“The big surprise was that when we took out this gene, the stem cells started to differentiate,” said Hetzer. “And not only did they start to differentiate, but they started to differentiate into neurons.”

Nup153, researchers discovered, put the brakes on certain genes that need to be turned on for stem cells to turn into brain cells. When the brakes are lifted, the stem cells start differentiating.

“This study not only revealed a critical function for nucleoporins in mediating the undifferentiated state of embryonic stem cells by silencing neural genes, but also introduced new mechanistic directions for elucidating the role of these proteins during mammalian development,” says Filipe Jacinto, a postdoctoral researcher in Hetzer’s lab and first author of the paper.

Hetzer suspects that other nucleoporins also have roles in gene expression control, but cautions that the roles could be very different—each nucleoporin, he says, likely targets a different set of genes, and some might activate the genes rather than repress them.

Mutations in many nucleoporin genes has been linked to human diseases and developmental disorders, including some forms of leukemia and inherited heart problems. Until now, Hetzer says, researchers have assumed the mutations led to disease by altering the transport of proteins in and out of a cell’s nucleus. “Now, we’re realizing this is probably not the only explanation,” he says. “Many of those diseases and developmental disorders might actually be caused by the ability of these genes to regulate gene expression programs.”

His lab is planning to follow up with studies on Nup153, and exactly how it’s recruited to genes, as well as investigating the developmental roles of other nucleoporins.

Chris Benner, director of the Integrative Genomics and Bioinformatics Core at the Salk Institute, also contributed to the work.

The work and the researchers involved were supported by grants from the National Institutes of Health and the National Cancer Institute.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probes fundamental life science questions in a unique, collaborative and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines. Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, MD, the Institute is an independent nonprofit organization and architectural landmark.

Contact Information
Salk Communications
press@salk.edu

Salk Communications | newswise
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>