Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection of the mouse gut by mucus depends on microbes

18.12.2014

The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. The work, published in EMBO reports, suggests that bacteria in the gut affect mucus barrier properties in ways that can have implications for health and disease.

“Genetically similar mice with subtle but stable and transmissible intestinal microbiota showed unexpectedly large differences in the inner colon mucus layer. The composition of the gut microbiota has significant effects on mucus properties,” says Malin E.V. Johansson from the University of Gothenburg who led the study.

By sequencing the microbiota and examining the 16S ribosomal RNA genes, the researchers discovered that two mouse colonies maintained in two different rooms in the same specific pathogen-free facility had different gut microbiota. They also had a mucus structure that was specific for each colony. Whereas one colony developed mucus that was not penetrable to bacteria, the other colony had an inner mucus layer permeable to bacteria.

Each group of mice had a stable population of bacteria that could be maternally transmitted: The group with impenetrable mucus had increased amounts of Erysipelotrichi bacteria, while the other group had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Free-living mice from the forest had mucus similar in composition to that found in mice in the non-penetrable colony. The authors also showed that the bacterial composition could be modulated to a small extent through the diet.

“The results from the free-living mice strongly argue for the importance of a well-developed inner mucus layer that efficiently separates bacteria from the host epithelium for the overall health of the mice,” says Johansson.

The different mucus properties were recreated by transplanting the microbial communities into germ-free mice. “After recolonisation of germ-free mice with the different microbiota we observed the same structural and functional differences in their mucus properties,” added Johansson.

Mucus is our outermost barrier to our microbiota in the gut. If the mucus fails to offer a protective barrier it can allow more bacteria to come in contact with our epithelium in a way that can trigger colon inflammation. Diseases such as ulcerative colitis show an increased incidence in the Western world and this study emphasizes the importance of the composition of the microbiota for an impenetrable protective mucus barrier.

The gut microbiota composition impairs the colon inner mucus layer barrier

Hedvig E Jakobsson, Ana M Rodríguez-Piñeiro, André Schütte, Anna Ermund, Preben Boysen, Mats Bemark, Felix Sommer, Fredrik Bäckhed, Gunnar C Hansson, and Malin E V Johansson.


Read the paper: doi: 10.15252/embr.201439263

Further information on EMBO reports is available at www.embor.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Nonia Pariente
Editor, EMBO reports
Tel: +49 6221 8891 305
nonia.pariente@embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2014/gut-mircobiota

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>