Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protection of the mouse gut by mucus depends on microbes

18.12.2014

The quality of the colon mucus in mice depends on the composition of gut microbiota, reports a Swedish-Norwegian team of researchers from the University of Gothenburg and the Norwegian University of Life Sciences in Oslo. The work, published in EMBO reports, suggests that bacteria in the gut affect mucus barrier properties in ways that can have implications for health and disease.

“Genetically similar mice with subtle but stable and transmissible intestinal microbiota showed unexpectedly large differences in the inner colon mucus layer. The composition of the gut microbiota has significant effects on mucus properties,” says Malin E.V. Johansson from the University of Gothenburg who led the study.

By sequencing the microbiota and examining the 16S ribosomal RNA genes, the researchers discovered that two mouse colonies maintained in two different rooms in the same specific pathogen-free facility had different gut microbiota. They also had a mucus structure that was specific for each colony. Whereas one colony developed mucus that was not penetrable to bacteria, the other colony had an inner mucus layer permeable to bacteria.

Each group of mice had a stable population of bacteria that could be maternally transmitted: The group with impenetrable mucus had increased amounts of Erysipelotrichi bacteria, while the other group had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Free-living mice from the forest had mucus similar in composition to that found in mice in the non-penetrable colony. The authors also showed that the bacterial composition could be modulated to a small extent through the diet.

“The results from the free-living mice strongly argue for the importance of a well-developed inner mucus layer that efficiently separates bacteria from the host epithelium for the overall health of the mice,” says Johansson.

The different mucus properties were recreated by transplanting the microbial communities into germ-free mice. “After recolonisation of germ-free mice with the different microbiota we observed the same structural and functional differences in their mucus properties,” added Johansson.

Mucus is our outermost barrier to our microbiota in the gut. If the mucus fails to offer a protective barrier it can allow more bacteria to come in contact with our epithelium in a way that can trigger colon inflammation. Diseases such as ulcerative colitis show an increased incidence in the Western world and this study emphasizes the importance of the composition of the microbiota for an impenetrable protective mucus barrier.

The gut microbiota composition impairs the colon inner mucus layer barrier

Hedvig E Jakobsson, Ana M Rodríguez-Piñeiro, André Schütte, Anna Ermund, Preben Boysen, Mats Bemark, Felix Sommer, Fredrik Bäckhed, Gunnar C Hansson, and Malin E V Johansson.


Read the paper: doi: 10.15252/embr.201439263

Further information on EMBO reports is available at www.embor.embopress.org

Media Contacts
Yvonne Kaul
Communications Officer
yvonne.kaul@embo.org

Nonia Pariente
Editor, EMBO reports
Tel: +49 6221 8891 305
nonia.pariente@embo.org

Weitere Informationen:

http://www.embo.org/news/research-news/research-news-2014/gut-mircobiota

Yvonne Kaul | EMBO

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>