Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production of an AIDS vaccine in algae

11.02.2016

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug that saves the lives of millions of diabetics every year. The transgenically synthesized insulin is 100% compatible with the immune system of the patients and, moreover, makes the laborious extraction of insulin from the pancreases of billions of slaughtered pigs and cows per year unnecessary.


Chlamydomonas reinhardtii - a single-cell green alga - Test of succesful gene integration for a potential AIDS vaccine production.

Rouhollah Barahimipour

Plants that have been used as production hosts for pharmaceuticals include, for example, tobacco, maize, rice, soybean, rapeseed and potato. However, most of these plants are primarily used as food and animal feed, and their dual use could result in potential conflicts. Moreover, these crop plants are often demanding regarding their space requirements, growing conditions and maintenance.

In many respects, algae compare favorably with crop plants: they are unpretentious, display a high resource efficiency and grow fast. Moreover, they have the potential to be directly used for human consumption, thus making cost-intensive purification unnecessary and resulting in a reduction of the manufacturing costs by up to 60%. In the future, it therefore may become possible to develop vaccines that can be delivered painlessly by simple oral consumption.

Over the last three decades, the single-celled green alga Chlamydomonas reinhardtii has become increasingly popular among plant biologists. It is a freshwater alga that can be found almost everywhere in the world. Chlamydomonas is a model organism in basic research and has been extremely well characterized. Many molecular tools have been developed for research with this alga, including methods for genetic modifications. But why aren’t we using algae for biotechnological purposes already?

Algae are a rather diverse group of organisms, and the application of existing tools and methods to an alga is often far from straightforward. Also, tools that have been developed for Chlamydomonas often cannot be directly transferred to other algal species, such as algae that produce higher amounts of biomass or species that grow more efficiently in sea water.

Moreover, even in Chlamydomonas, stable genetic modifications are still challenging. After the new genetic information is transferred into the genome of the alga, it is often not or not efficiently used and, what’s more, the alga can silence the foreign information over time, resulting in the loss of synthesis of the new protein. The research team of Prof. Ralph Bock seeks to generate improved algal strains to make them a competitive system in biotechnology.

In their latest study, the researchers used a gene that encodes an antigen of the HI virus. They optimized the foreign genetic information such that it allows the alga to better “understand” it and translate it more efficiently into the corresponding protein. To this end, the researchers identified characteristics of the genetic makeup of the alga and modified the foreign gene sequences accordingly.

“Additionally, we generated an alga strain that is able to use the new genetic information much more efficiently than conventional strains”, explains Dr. Juliane Neupert, researcher at the Max Planck Institute. The optimized foreign gene, encoding a potential component of an AIDS vaccine, was then transferred into the new alga strain to test the efficiency and practical applicability of the new production system.

78 million people worldwide are infected with HIV, a virus that killed already more than 39 million people. Every year, 2 million people are newly infected, mainly in developing countries. This underlines the urgent need to develop an effective AIDS vaccine. More than 30 years of research resulted in the identification of a few virus proteins that are efficiently recognized by our immune system and, thus, are candidate components of a future AIDS vaccine. Among them is the so-called p24 protein.


“We were able to optimize the p24 gene structure and then transferred it into the genome of the optimized Chlamydomonas strain with the help of genetic engineering methods”, explains Rouhollah Barahimipour, first author of the study. “The alga was now able to use the optimized gene and to accumulate the p24 protein”, he confirms.

The researchers in Potsdam-Golm were able to identify the reasons for previous difficulties with synthesizing foreign proteins in Chlamydomonas. At the same time, they developed a new, highly efficient production platform for pharmaceutical proteins. Their work indicates a bright future for algae in biotechnology. As soon as a new vaccine is identified, this system can now be used for fast and efficient large-scale production. The research team published their results in the journal “Plant Molecular Biology”.

Contact:
Prof. Ralph Bock
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8700
Rbock@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original publication:
Rouhollah Barahimipour, Juliane Neupert and Ralph Bock
Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker
Plant Molecular Biology, 8.01.2016, doi: 10.1007/s11103-015-0425-8

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2044732/HIV_vaccine_in_algae

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>