Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Production of an AIDS vaccine in algae

11.02.2016

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug that saves the lives of millions of diabetics every year. The transgenically synthesized insulin is 100% compatible with the immune system of the patients and, moreover, makes the laborious extraction of insulin from the pancreases of billions of slaughtered pigs and cows per year unnecessary.


Chlamydomonas reinhardtii - a single-cell green alga - Test of succesful gene integration for a potential AIDS vaccine production.

Rouhollah Barahimipour

Plants that have been used as production hosts for pharmaceuticals include, for example, tobacco, maize, rice, soybean, rapeseed and potato. However, most of these plants are primarily used as food and animal feed, and their dual use could result in potential conflicts. Moreover, these crop plants are often demanding regarding their space requirements, growing conditions and maintenance.

In many respects, algae compare favorably with crop plants: they are unpretentious, display a high resource efficiency and grow fast. Moreover, they have the potential to be directly used for human consumption, thus making cost-intensive purification unnecessary and resulting in a reduction of the manufacturing costs by up to 60%. In the future, it therefore may become possible to develop vaccines that can be delivered painlessly by simple oral consumption.

Over the last three decades, the single-celled green alga Chlamydomonas reinhardtii has become increasingly popular among plant biologists. It is a freshwater alga that can be found almost everywhere in the world. Chlamydomonas is a model organism in basic research and has been extremely well characterized. Many molecular tools have been developed for research with this alga, including methods for genetic modifications. But why aren’t we using algae for biotechnological purposes already?

Algae are a rather diverse group of organisms, and the application of existing tools and methods to an alga is often far from straightforward. Also, tools that have been developed for Chlamydomonas often cannot be directly transferred to other algal species, such as algae that produce higher amounts of biomass or species that grow more efficiently in sea water.

Moreover, even in Chlamydomonas, stable genetic modifications are still challenging. After the new genetic information is transferred into the genome of the alga, it is often not or not efficiently used and, what’s more, the alga can silence the foreign information over time, resulting in the loss of synthesis of the new protein. The research team of Prof. Ralph Bock seeks to generate improved algal strains to make them a competitive system in biotechnology.

In their latest study, the researchers used a gene that encodes an antigen of the HI virus. They optimized the foreign genetic information such that it allows the alga to better “understand” it and translate it more efficiently into the corresponding protein. To this end, the researchers identified characteristics of the genetic makeup of the alga and modified the foreign gene sequences accordingly.

“Additionally, we generated an alga strain that is able to use the new genetic information much more efficiently than conventional strains”, explains Dr. Juliane Neupert, researcher at the Max Planck Institute. The optimized foreign gene, encoding a potential component of an AIDS vaccine, was then transferred into the new alga strain to test the efficiency and practical applicability of the new production system.

78 million people worldwide are infected with HIV, a virus that killed already more than 39 million people. Every year, 2 million people are newly infected, mainly in developing countries. This underlines the urgent need to develop an effective AIDS vaccine. More than 30 years of research resulted in the identification of a few virus proteins that are efficiently recognized by our immune system and, thus, are candidate components of a future AIDS vaccine. Among them is the so-called p24 protein.


“We were able to optimize the p24 gene structure and then transferred it into the genome of the optimized Chlamydomonas strain with the help of genetic engineering methods”, explains Rouhollah Barahimipour, first author of the study. “The alga was now able to use the optimized gene and to accumulate the p24 protein”, he confirms.

The researchers in Potsdam-Golm were able to identify the reasons for previous difficulties with synthesizing foreign proteins in Chlamydomonas. At the same time, they developed a new, highly efficient production platform for pharmaceutical proteins. Their work indicates a bright future for algae in biotechnology. As soon as a new vaccine is identified, this system can now be used for fast and efficient large-scale production. The research team published their results in the journal “Plant Molecular Biology”.

Contact:
Prof. Ralph Bock
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8700
Rbock@mpimp-golm.mpg.de

Dr. Ulrike Glaubitz
Press and public relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275
glaubitz@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Original publication:
Rouhollah Barahimipour, Juliane Neupert and Ralph Bock
Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker
Plant Molecular Biology, 8.01.2016, doi: 10.1007/s11103-015-0425-8

Weitere Informationen:

http://www.mpimp-golm.mpg.de/2044732/HIV_vaccine_in_algae

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>