Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal stress accelerates growth and inhibits the motoric development of unborn monkeys

21.09.2016

For the first time, behavioral ecologists studied the impact of maternal stress on primate infants in the wild.

At their field station in Thailand, researchers of the German Primate Center - Leibniz Institute for Primate Research (DPZ) and the University of Göttingen followed non-human primate mothers through their gestation and their infants through the first one and a half years of their lives.


An infant Assamese macaque being nursed in the hill evergreen forest of Thailand. Photo: Andreas Berghänel

Foto: Andreas Berghänel

The offspring of mothers that were stressed from food shortages grew faster than their peers but paid for that with slower motoric development and probably also a weakened immune system. This is the first study on the effects of prenatal stress in long-lived mammals in their natural habitat. The results support the theory that stressed mothers change their unborn’s pace of life (Proceedings of the Royal Society B 20161304).

It is a known fact that maternal stress often has a long-term impact on the unborn child.
Yet, physicians and biologists still discuss as to whether these maternal influences should generally be regarded as pathological or as to whether it is an evolved adaptative mechanism. Are mothers able to program their unborn offspring to increase its evolutionary fitness?

This hypothesis is supported by studies on short-lived mammals such as rats, since the environmental conditions during gestation are very similar to those the offspring will breed in a few month later. The new study suggests that adaptive prenatal stress effects can also occur in long-lived monkeys.

The physiological stress following natural food shortages seemed to have cause accelerated growth among young macaques as evident from the analysis of data on fruit availability in the most important tree species, hormone levels in the feces of mothers and growth curves derived from hundreds of photos of Assamese macaque infants in the hill evergreen forest of northeastern Thailand.

In mammals growth is usually closely related to important developmental milestones. The first author of the study, Andreas Berghänel, explains, "A shortened life expectancy caused by prenatal development disturbances here leads to an accelerated pace of life. The offspring grows faster and reaches sexually maturity quicker allowing for earlier and faster reproduction.”

Even in humans, early life adversities are related to earlier sexual maturity. Nevertheless, Julia Ostner, the head of the field project, is surprised, "The faster pace of life is astounding. We expected that the poor conditions experienced in the womb would have only negative consequences for the young during the gestation period."

And indeed, accelerated growth is only one of the consequences of reduced food availability and an increased glucocorticoid level. Offspring exposed to these conditions showed delayed motoric development and took longer to learn how to dangle from a branch on one leg, to jump backwards or to leap at least five meters far in the canopy of the forest. When an outbreak of conjunctivitis occurred, the external signs were noticed in the infant the longer, the more stress their mothers experienced during gestation. Thus, also the immune system seems to be affected.

It remains unclear whether the prenatal stress also affected the cognitive development of the offspring. Further investigations are needed to determine whether adverse prenatal conditions increase reproductive rates of macaques and reduce their longevity, as predicted by the hypothesis of the internal adaptive response.

Original Publication:

Andreas Berghänel, Michael Heistermann, Oliver Schülke and Julia Ostner (2016): Prenatal stress effects in a wild, long-lived primate: predictive adaptive responses in an unpredictable environment. Proceedings of the Royal Society B. 20161304.
http://dx.doi.org/10.1098/rspb.2016.1304

Contact and notes for editors:

Andreas Berghänel
Tel: +49 176 2112 3898
E-mail: abergha@gwdg.de

Luzie Almenräder (Communication)
Tel: +49 551 3851-424
E-mail: lalmenraeder@dpz.eu

Printable pictures are available in our Media library. We kindly request a specimen copy in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains four field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 88 research and infrastructure facilities of the Leibniz Association.

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft
Further information:
http://dpz.eu/

Further reports about: DPZ Primatenforschung Primatenzentrum food shortages immune system macaques monkeys

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>