Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal stress accelerates growth and inhibits the motoric development of unborn monkeys

21.09.2016

For the first time, behavioral ecologists studied the impact of maternal stress on primate infants in the wild.

At their field station in Thailand, researchers of the German Primate Center - Leibniz Institute for Primate Research (DPZ) and the University of Göttingen followed non-human primate mothers through their gestation and their infants through the first one and a half years of their lives.


An infant Assamese macaque being nursed in the hill evergreen forest of Thailand. Photo: Andreas Berghänel

Foto: Andreas Berghänel

The offspring of mothers that were stressed from food shortages grew faster than their peers but paid for that with slower motoric development and probably also a weakened immune system. This is the first study on the effects of prenatal stress in long-lived mammals in their natural habitat. The results support the theory that stressed mothers change their unborn’s pace of life (Proceedings of the Royal Society B 20161304).

It is a known fact that maternal stress often has a long-term impact on the unborn child.
Yet, physicians and biologists still discuss as to whether these maternal influences should generally be regarded as pathological or as to whether it is an evolved adaptative mechanism. Are mothers able to program their unborn offspring to increase its evolutionary fitness?

This hypothesis is supported by studies on short-lived mammals such as rats, since the environmental conditions during gestation are very similar to those the offspring will breed in a few month later. The new study suggests that adaptive prenatal stress effects can also occur in long-lived monkeys.

The physiological stress following natural food shortages seemed to have cause accelerated growth among young macaques as evident from the analysis of data on fruit availability in the most important tree species, hormone levels in the feces of mothers and growth curves derived from hundreds of photos of Assamese macaque infants in the hill evergreen forest of northeastern Thailand.

In mammals growth is usually closely related to important developmental milestones. The first author of the study, Andreas Berghänel, explains, "A shortened life expectancy caused by prenatal development disturbances here leads to an accelerated pace of life. The offspring grows faster and reaches sexually maturity quicker allowing for earlier and faster reproduction.”

Even in humans, early life adversities are related to earlier sexual maturity. Nevertheless, Julia Ostner, the head of the field project, is surprised, "The faster pace of life is astounding. We expected that the poor conditions experienced in the womb would have only negative consequences for the young during the gestation period."

And indeed, accelerated growth is only one of the consequences of reduced food availability and an increased glucocorticoid level. Offspring exposed to these conditions showed delayed motoric development and took longer to learn how to dangle from a branch on one leg, to jump backwards or to leap at least five meters far in the canopy of the forest. When an outbreak of conjunctivitis occurred, the external signs were noticed in the infant the longer, the more stress their mothers experienced during gestation. Thus, also the immune system seems to be affected.

It remains unclear whether the prenatal stress also affected the cognitive development of the offspring. Further investigations are needed to determine whether adverse prenatal conditions increase reproductive rates of macaques and reduce their longevity, as predicted by the hypothesis of the internal adaptive response.

Original Publication:

Andreas Berghänel, Michael Heistermann, Oliver Schülke and Julia Ostner (2016): Prenatal stress effects in a wild, long-lived primate: predictive adaptive responses in an unpredictable environment. Proceedings of the Royal Society B. 20161304.
http://dx.doi.org/10.1098/rspb.2016.1304

Contact and notes for editors:

Andreas Berghänel
Tel: +49 176 2112 3898
E-mail: abergha@gwdg.de

Luzie Almenräder (Communication)
Tel: +49 551 3851-424
E-mail: lalmenraeder@dpz.eu

Printable pictures are available in our Media library. We kindly request a specimen copy in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains four field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 88 research and infrastructure facilities of the Leibniz Association.

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft
Further information:
http://dpz.eu/

Further reports about: DPZ Primatenforschung Primatenzentrum food shortages immune system macaques monkeys

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>