Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature cell differentiation leads to disorders in pancreatic development

12.04.2017

Researchers at the University of Helsinki, Finland, have uncovered a mechanism through which a mutation in the STAT3 gene leads to a disorder in the development of the pancreas and to infant diabetes.

Neonatal diabetes mellitus (NDM), or diabetes among infants less than six months of age, is a rare form of diabetes caused by a mutation in genes crusial to the development or function of beta cells. In about half of such cases, the disease becomes permanent (PNDM). Mutations in more than 20 genes have thus far been identified as causing the permanent variety of neonatal diabetes.


In the photo on the left, the cells are in middle of the differentiation process (red is insulin, green glucagon, blue DNA). In the photo on the right, the cells have nearly completed their differentiation and are grouped together in clumps of cells similar to pancreatic islets (red is insulin, green chromogranin and blue DNA).

Credit: Otonkoski Lab / University of Helsinki

Unlike in type 1 diabetes, NDM patients typically do not have the autoantibodies normally associated with diabetes. However, it was recently discovered that mutations which activate the STAT3 gene may result in neonatal diabetes that includes a strong autoimmune phenomenon.

The mutation that activated the STAT gene most intensely (K392R) was found to cause the most severe form of neonatal diabetes. The mutation was discovered in 2014 in a Finnish patient, who had high levels of beta cell antibodies at birth and underdeveloped pancreas. The patient later developed several autoimmune manifestations in different organs.

A new study, led by Professor Timo Otonkoski, examined the impact the STAT3 mutation has on the development of the pancreas by using induced pluripotent stem cells (iPS) derived from the patient's skin cells. The study was published in Cell Reports.

The iPS cells produced from the skin cells were made to differentiate into pancreatic islet cells through a complex in vitro method that mirrors the normal development of the pancreas in humans. Before differentiation, the point mutation in the patient cells was repaired using CRISPR-CAS9 genome editing. After this, it was possible to compare the differentiation of the patient's cells during pancreatic development in two kinds of genetically similar cells: ones sick carrying the disease mutation and ones made healthy after being repaired through genome editing.

The results showed that the mutated STAT3 protein produced by the patient's cells led to the premature differentiation of the pancreatic progenitor cells into endocrine cells that produce insulin or glucagon. The results were clearly apparent in both cell cultures and in cells transplanted to mice, which allowed the researchers to study the development of the cells for much longer.

"The impact of the mutated STAT3 protein mechanism we discovered accounts for the underdeveloped pancreas and the early onset of diabetes, even without the damage done by autoimmune mechanisms," states Jonna Saarimäki-Vire, postdoctoral researcher and first author of the article.

Professor Otonkoski and researcher Diego Balboa, who was in charge of genome editing, point out that even though the mutation is rare, the study has broader impact.

"These results reveal the previously unknown significance of the STAT3 gene to pancreatic development. We also successfully used new stem cell technologies and genome editing methods that enable high-precision analysis of the mechanisms underlying disease mutations. We intend to use the same approach to study other diabetes genes in the future."

Timo Otonkoski | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>