Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Premature cell differentiation leads to disorders in pancreatic development

12.04.2017

Researchers at the University of Helsinki, Finland, have uncovered a mechanism through which a mutation in the STAT3 gene leads to a disorder in the development of the pancreas and to infant diabetes.

Neonatal diabetes mellitus (NDM), or diabetes among infants less than six months of age, is a rare form of diabetes caused by a mutation in genes crusial to the development or function of beta cells. In about half of such cases, the disease becomes permanent (PNDM). Mutations in more than 20 genes have thus far been identified as causing the permanent variety of neonatal diabetes.


In the photo on the left, the cells are in middle of the differentiation process (red is insulin, green glucagon, blue DNA). In the photo on the right, the cells have nearly completed their differentiation and are grouped together in clumps of cells similar to pancreatic islets (red is insulin, green chromogranin and blue DNA).

Credit: Otonkoski Lab / University of Helsinki

Unlike in type 1 diabetes, NDM patients typically do not have the autoantibodies normally associated with diabetes. However, it was recently discovered that mutations which activate the STAT3 gene may result in neonatal diabetes that includes a strong autoimmune phenomenon.

The mutation that activated the STAT gene most intensely (K392R) was found to cause the most severe form of neonatal diabetes. The mutation was discovered in 2014 in a Finnish patient, who had high levels of beta cell antibodies at birth and underdeveloped pancreas. The patient later developed several autoimmune manifestations in different organs.

A new study, led by Professor Timo Otonkoski, examined the impact the STAT3 mutation has on the development of the pancreas by using induced pluripotent stem cells (iPS) derived from the patient's skin cells. The study was published in Cell Reports.

The iPS cells produced from the skin cells were made to differentiate into pancreatic islet cells through a complex in vitro method that mirrors the normal development of the pancreas in humans. Before differentiation, the point mutation in the patient cells was repaired using CRISPR-CAS9 genome editing. After this, it was possible to compare the differentiation of the patient's cells during pancreatic development in two kinds of genetically similar cells: ones sick carrying the disease mutation and ones made healthy after being repaired through genome editing.

The results showed that the mutated STAT3 protein produced by the patient's cells led to the premature differentiation of the pancreatic progenitor cells into endocrine cells that produce insulin or glucagon. The results were clearly apparent in both cell cultures and in cells transplanted to mice, which allowed the researchers to study the development of the cells for much longer.

"The impact of the mutated STAT3 protein mechanism we discovered accounts for the underdeveloped pancreas and the early onset of diabetes, even without the damage done by autoimmune mechanisms," states Jonna Saarimäki-Vire, postdoctoral researcher and first author of the article.

Professor Otonkoski and researcher Diego Balboa, who was in charge of genome editing, point out that even though the mutation is rare, the study has broader impact.

"These results reveal the previously unknown significance of the STAT3 gene to pancreatic development. We also successfully used new stem cell technologies and genome editing methods that enable high-precision analysis of the mechanisms underlying disease mutations. We intend to use the same approach to study other diabetes genes in the future."

Timo Otonkoski | EurekAlert!

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>