Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Predatory Sea Snails Produce Weaponized Insulin


University of Utah biologists say the discovery may help reveal secrets of insulin function and energy metabolism in people.

As predators go, cone snails are slow-moving and lack the typical fighting parts. They’ve made up for it by producing a vast array of fast-acting toxins that target the nervous systems of prey. A new study reveals that some cone snails add a weaponized form of insulin to the venom cocktail they use to disable fish.

Jason Biggs and Baldomero Olivera

The images show two species of cone snail, Conus geographus (left) and Conus tulipa (right) attempting to capture their fish prey. As they approach potential prey, the snails release a specialized insulin into the water, along with neurotoxins that inhibit sensory circuits, resulting in hypoglycemic, sensory-deprived fish that are easier to engulf with their large, distensible false mouths. Once engulfed, powerful paralytic toxins are injected by the snail into each fish.

“It is very unlikely that it is serving a different purpose,” said lead author Helena Safavi-Hemami, a research assistant professor at the University of Utah.

“This is a unique type of insulin. It is shorter than any insulin that has been described in any animal,” said senior author Baldomero M. Olivera, a distinguished professor of biology at the University of Utah. “We found it in the venom in large amounts.”

A synthetic form of the snail insulin, when injected into zebrafish, caused blood glucose levels to plummet. The insulin also disrupted swimming behavior in fish exposed through water contact, as measured by the percentage of time spent swimming and frequency of movements. The researchers propose that adding insulin to the mix of venom toxins enabled predatory cone snails to disable entire schools of swimming fish with hypoglycemic shock. The study appears in Proceedings of the National Academy of Sciences.

Cone snails are abundant in most tropical marine waters, especially around coral reefs. Each species makes a distinct repertoire of venom compounds, mixtures that have evolved to target particular prey. Conus geographus, a cone snail that has killed dozens of people in accidental encounters, traps fish by releasing a blend of immobilizing venoms into the water, according to the prevailing hypothesis. The snail protrudes a stretchy mouth-like part and aims it like a gun barrel at fish, which become disoriented and stop moving even as the snail’s mouth part slowly advances and engulfs the fish.

Seeking to understand how the cone snail springs its slow-motion trap, the Utah researchers searched the gene sequences of all of the proteins expressed in the venom gland of Conus geographus. They found two sequences that looked surprisingly similar to that of the hormone insulin, used by humans and other vertebrate animals to regulate energy metabolism. The insulin genes were more highly expressed in the venom gland than genes for some of the established venom toxins. One sequence proved very similar to that of fish insulin. Chemical analysis of venom confirmed that it contained abundant amounts of this insulin.

The type of insulin found in venom glands seems to match the prey of a given cone snail. Fish insulin was present in the venoms of Conus geographus and Conus tulipa, which both practice the same fish-trapping method. But the Utah researchers found no evidence of fish insulin in the venom of five species of fish-eating cone snails that are ambush hunters that attack with a harpoon-like organ. Nor did they find fish insulin in the venom of cone snails that prey on molluscs or worms. (Those snails expressed insulins similar to those used by mollusc and worms.)

For more clear-cut evidence that snails use insulin as a weapon, Joanna Gajewiak, a research assistant professor at the university, came up with a fast way to synthesize enough of the insulin to directly test its effects on fish. The team was concerned about getting scooped by competitors. “We knew that other people could stumble upon this very soon,” Safavi-Hemami said.

The snail insulin could prove useful as a tool to probe the systems the human body uses to control blood sugar and energy metabolism. The snail insulin consists of 43 amino acid building blocks, fewer than any known insulin. Its stripped down size and odd chemical modifications may have evolved as a way to make it better at causing hypoglycemia in prey.


University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350 

Contact Information
-- Helena Safavi-Hemami, research assistant professor, University of Utah – office 801-581-8370, cell 801-428-9511,

-- Baldomero Olivera, distinguished professor, University of Utah – office 801-581-8370,

-- Joe Rojas-Burke, senior science writer, University of Utah Communications Office – office 801-585-6861, cell 503-896-1079,

Helena Safavi-Hemami | newswise

Further reports about: Insulin Metabolism Predatory cone snail energy metabolism snails toxins venom venom gland

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>