Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory Sea Snails Produce Weaponized Insulin

20.01.2015

University of Utah biologists say the discovery may help reveal secrets of insulin function and energy metabolism in people.

As predators go, cone snails are slow-moving and lack the typical fighting parts. They’ve made up for it by producing a vast array of fast-acting toxins that target the nervous systems of prey. A new study reveals that some cone snails add a weaponized form of insulin to the venom cocktail they use to disable fish.


Jason Biggs and Baldomero Olivera

The images show two species of cone snail, Conus geographus (left) and Conus tulipa (right) attempting to capture their fish prey. As they approach potential prey, the snails release a specialized insulin into the water, along with neurotoxins that inhibit sensory circuits, resulting in hypoglycemic, sensory-deprived fish that are easier to engulf with their large, distensible false mouths. Once engulfed, powerful paralytic toxins are injected by the snail into each fish.

“It is very unlikely that it is serving a different purpose,” said lead author Helena Safavi-Hemami, a research assistant professor at the University of Utah.

“This is a unique type of insulin. It is shorter than any insulin that has been described in any animal,” said senior author Baldomero M. Olivera, a distinguished professor of biology at the University of Utah. “We found it in the venom in large amounts.”

A synthetic form of the snail insulin, when injected into zebrafish, caused blood glucose levels to plummet. The insulin also disrupted swimming behavior in fish exposed through water contact, as measured by the percentage of time spent swimming and frequency of movements. The researchers propose that adding insulin to the mix of venom toxins enabled predatory cone snails to disable entire schools of swimming fish with hypoglycemic shock. The study appears in Proceedings of the National Academy of Sciences.

Cone snails are abundant in most tropical marine waters, especially around coral reefs. Each species makes a distinct repertoire of venom compounds, mixtures that have evolved to target particular prey. Conus geographus, a cone snail that has killed dozens of people in accidental encounters, traps fish by releasing a blend of immobilizing venoms into the water, according to the prevailing hypothesis. The snail protrudes a stretchy mouth-like part and aims it like a gun barrel at fish, which become disoriented and stop moving even as the snail’s mouth part slowly advances and engulfs the fish.

Seeking to understand how the cone snail springs its slow-motion trap, the Utah researchers searched the gene sequences of all of the proteins expressed in the venom gland of Conus geographus. They found two sequences that looked surprisingly similar to that of the hormone insulin, used by humans and other vertebrate animals to regulate energy metabolism. The insulin genes were more highly expressed in the venom gland than genes for some of the established venom toxins. One sequence proved very similar to that of fish insulin. Chemical analysis of venom confirmed that it contained abundant amounts of this insulin.

The type of insulin found in venom glands seems to match the prey of a given cone snail. Fish insulin was present in the venoms of Conus geographus and Conus tulipa, which both practice the same fish-trapping method. But the Utah researchers found no evidence of fish insulin in the venom of five species of fish-eating cone snails that are ambush hunters that attack with a harpoon-like organ. Nor did they find fish insulin in the venom of cone snails that prey on molluscs or worms. (Those snails expressed insulins similar to those used by mollusc and worms.)

For more clear-cut evidence that snails use insulin as a weapon, Joanna Gajewiak, a research assistant professor at the university, came up with a fast way to synthesize enough of the insulin to directly test its effects on fish. The team was concerned about getting scooped by competitors. “We knew that other people could stumble upon this very soon,” Safavi-Hemami said.

The snail insulin could prove useful as a tool to probe the systems the human body uses to control blood sugar and energy metabolism. The snail insulin consists of 43 amino acid building blocks, fewer than any known insulin. Its stripped down size and odd chemical modifications may have evolved as a way to make it better at causing hypoglycemia in prey.

###

University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350
www.unews.utah.edu 

Contact Information
-- Helena Safavi-Hemami, research assistant professor, University of Utah – office 801-581-8370, cell 801-428-9511, safavihelena@gmail.com

-- Baldomero Olivera, distinguished professor, University of Utah – office 801-581-8370, olivera@biology.utah.edu

-- Joe Rojas-Burke, senior science writer, University of Utah Communications Office – office 801-585-6861, cell 503-896-1079, joe.rojas@utah.edu

Helena Safavi-Hemami | newswise

Further reports about: Insulin Metabolism Predatory cone snail energy metabolism snails toxins venom venom gland

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>