Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predatory Sea Snails Produce Weaponized Insulin

20.01.2015

University of Utah biologists say the discovery may help reveal secrets of insulin function and energy metabolism in people.

As predators go, cone snails are slow-moving and lack the typical fighting parts. They’ve made up for it by producing a vast array of fast-acting toxins that target the nervous systems of prey. A new study reveals that some cone snails add a weaponized form of insulin to the venom cocktail they use to disable fish.


Jason Biggs and Baldomero Olivera

The images show two species of cone snail, Conus geographus (left) and Conus tulipa (right) attempting to capture their fish prey. As they approach potential prey, the snails release a specialized insulin into the water, along with neurotoxins that inhibit sensory circuits, resulting in hypoglycemic, sensory-deprived fish that are easier to engulf with their large, distensible false mouths. Once engulfed, powerful paralytic toxins are injected by the snail into each fish.

“It is very unlikely that it is serving a different purpose,” said lead author Helena Safavi-Hemami, a research assistant professor at the University of Utah.

“This is a unique type of insulin. It is shorter than any insulin that has been described in any animal,” said senior author Baldomero M. Olivera, a distinguished professor of biology at the University of Utah. “We found it in the venom in large amounts.”

A synthetic form of the snail insulin, when injected into zebrafish, caused blood glucose levels to plummet. The insulin also disrupted swimming behavior in fish exposed through water contact, as measured by the percentage of time spent swimming and frequency of movements. The researchers propose that adding insulin to the mix of venom toxins enabled predatory cone snails to disable entire schools of swimming fish with hypoglycemic shock. The study appears in Proceedings of the National Academy of Sciences.

Cone snails are abundant in most tropical marine waters, especially around coral reefs. Each species makes a distinct repertoire of venom compounds, mixtures that have evolved to target particular prey. Conus geographus, a cone snail that has killed dozens of people in accidental encounters, traps fish by releasing a blend of immobilizing venoms into the water, according to the prevailing hypothesis. The snail protrudes a stretchy mouth-like part and aims it like a gun barrel at fish, which become disoriented and stop moving even as the snail’s mouth part slowly advances and engulfs the fish.

Seeking to understand how the cone snail springs its slow-motion trap, the Utah researchers searched the gene sequences of all of the proteins expressed in the venom gland of Conus geographus. They found two sequences that looked surprisingly similar to that of the hormone insulin, used by humans and other vertebrate animals to regulate energy metabolism. The insulin genes were more highly expressed in the venom gland than genes for some of the established venom toxins. One sequence proved very similar to that of fish insulin. Chemical analysis of venom confirmed that it contained abundant amounts of this insulin.

The type of insulin found in venom glands seems to match the prey of a given cone snail. Fish insulin was present in the venoms of Conus geographus and Conus tulipa, which both practice the same fish-trapping method. But the Utah researchers found no evidence of fish insulin in the venom of five species of fish-eating cone snails that are ambush hunters that attack with a harpoon-like organ. Nor did they find fish insulin in the venom of cone snails that prey on molluscs or worms. (Those snails expressed insulins similar to those used by mollusc and worms.)

For more clear-cut evidence that snails use insulin as a weapon, Joanna Gajewiak, a research assistant professor at the university, came up with a fast way to synthesize enough of the insulin to directly test its effects on fish. The team was concerned about getting scooped by competitors. “We knew that other people could stumble upon this very soon,” Safavi-Hemami said.

The snail insulin could prove useful as a tool to probe the systems the human body uses to control blood sugar and energy metabolism. The snail insulin consists of 43 amino acid building blocks, fewer than any known insulin. Its stripped down size and odd chemical modifications may have evolved as a way to make it better at causing hypoglycemia in prey.

###

University of Utah Communications
75 Fort Douglas Boulevard, Salt Lake City, UT 84113
801-581-6773 fax: 801-585-3350
www.unews.utah.edu 

Contact Information
-- Helena Safavi-Hemami, research assistant professor, University of Utah – office 801-581-8370, cell 801-428-9511, safavihelena@gmail.com

-- Baldomero Olivera, distinguished professor, University of Utah – office 801-581-8370, olivera@biology.utah.edu

-- Joe Rojas-Burke, senior science writer, University of Utah Communications Office – office 801-585-6861, cell 503-896-1079, joe.rojas@utah.edu

Helena Safavi-Hemami | newswise

Further reports about: Insulin Metabolism Predatory cone snail energy metabolism snails toxins venom venom gland

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>