Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predators key to helping prey evolve with climate change

16.12.2015

The key to helping animals evolve quickly in response to climate change could actually be their predators, according to a new UBC study.

The study is one of the first to show that species interactions, meaning the way species interact with each other in an ecosystem, like in a predator-prey relationship, is important to understanding how animals will respond to climate change.


The key to helping animals evolve quickly in response to climate change could actually be their predators.

Credit: Michelle Tseng

The findings, published today in Biology Letters, have implications for ecosystems around the world where many top predators like sharks or polar bears are disappearing because of increasing pressure from climate change and human populations.

"Not only can predators keep prey populations in check but in some cases they can help speed up the evolutionary response to climate change," said Michelle Tseng, a research associate in UBC's Department of Zoology and lead author of the study. "We now understand that species interactions and evolution can play a significant role in preventing animals from going extinct in a rapidly changing climate."

For the experiment, Tseng and her colleague Mary O'Connor, an assistant professor in the Department of Zoology, studied a small crustacean known as the water flea or by its Latin name Daphnia. These tiny organisms are key members of freshwater ecosystems around the world, and healthy lakes are typically filled with Daphnia or other similar species.

In the experiments Daphnia did not show any evolutionary response to increased temperature when there were no predators in the environment. When they lived alongside their predators, in this case a predatory fly larva, Daphnia populations evolved very quickly to a three-degree increase in water temperature.

Until recently scientists had little idea if species could evolve fast enough to save themselves from extinction in the face of climate change. In laboratory settings, a few studies had shown that some species could evolve rapidly, but these lab conditions were not very realistic.

Tseng and O'Connor set out to better understand how organisms may react to climate change in more realistic situations like those where they have to cope with finding food, finding a mate, or escaping from predators.

The UBC zoologists were surprised by their results. They thought the predators would eat enough Daphnia that their population sizes would be too small for evolution to occur; instead the opposite happened.

"In nature, no population lives in isolation," said Tseng. "The community plays a big role in whether and how an organism responds to climate change. These results highlight the importance of conserving the entire ecosystem instead of protecting just one species."

BACKGROUND

In the experiment, when the Daphnia lived alongside their predators, the populations evolved very quickly to a three-degree increase in water temperature.

The researchers believe evolution to warmer temperatures sped up with predators because the predators preferred to eat those Daphnia that happened also to be bad at coping with warmer temperatures.

The combination of predators and warmer temperatures resulted in an evolutionary shift in the population from a larger-bodied, more slowly reproducing population, to a population that was 10 per cent smaller in body size, and twice as fast at reproducing. This trend of both temperature and predators causing smaller body sizes is not uncommon in nature, which leads the researchers to think this benefit of predators for evolutionary rates might not be specific to just Daphnia.

Media Contact

Heather Amos
heather.amos@ubc.ca
604-822-3213

 @UBCnews

http://www.ubc.ca 

Heather Amos | EurekAlert!

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>