Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise gene transfer into therapy relevant cells after vector injection into blood

10.02.2015

Therapeutic gene transfer is considered as a promising novel strategy to treat genetic disorders and cancer. So far, target cells are often isolated from patients for this purpose, and re-administered after gene transfer. In collaboration with colleagues from the Universities of Cologne and Zurich, researchers at the Paul-Ehrlich-Institut have succeeded in developing gene transfer vehicles that target the therapy relevant cell type directly in the organism. The resulting gene transfer occurs with an extremely high degree of selectivity. A report on the research results can be found in Nature Communications in its online edition of 10.02.2015.

Vectors derived from adeno-associated viruses (AAV) were used as vehicles for targeted gene transfer by the research group of Professor Christian J. Buchholz, Principal Investigator at the LOEWE Centre for Cell and Gene Therapy at Frankfurt am Main and head of the Section “Molecular Biotechnology and Gene Therapy ” of the President of the Paul-Ehrlich-Institut.


AAV is a non-pathogenic parvovirus. The only gene therapy medicinal product authorised in Europe so far, is also based on AAV gene vectors and intended for the treatment of a rare metabolic disorder.

The strategy for the generation of the new precision gene vectors was developed and implemented jointly with Dr Hildegard Büning, head of the AAV Vector Development Research Group at the ZMMK (Zentrum für Molekulare Medizin Köln, Center for Molecular Medicine Cologne) of the University of Cologne: Through exchange of two amino acids, AAV lost its ability to bind to its natural receptor and became thereby unable to penetrate its broad range of natural target cells.

Novel target structures (DARPins, designed ankyrin repeat proteins) were then attached to the surface of the modified vector particles. These structures were developed at Zurich University. The structures can be selected in such a way that they mediate a selective binding of the DARPin-containing AAV vector particles to the therapy relevant cell type only.

This is what enables the AAV vector to attach to and penetrate the desired target cell. The paper referenced here reports on the use of three different DARPins, which equipped AAV vectors either with a specificity for Her2/neu, a tumour marker in breast cancer, for EpCAM, an epithelial surface protein, or for a marker of particular blood cells (CD4 on the surface of lymphocytes with distinct immunological functions).

In the mouse model, the vector for Her2/neu targeted 80 percent of all metastatic sites after only a single injection. If the vector was armed with a cytotoxic gene, the survival rate of the mice was substantially prolonged compared to mice receiving an authorised anti-tumour product. Using the EpCAM-targeted vector, tumour cells could be detected with impressive sensitivity in human blood (few hundred tumour cells in several millilitres of blood).

The desired goal of a cell type specific in vivo gene transfer was also achieved with the blood cell targeted vector: AAV transferred the gene only into lymphocytes present in spleen carrying the CD4 protein target structure.

“The method developed by us jointly is a very promising tool both in fundamental research and for the targeted gene transfer in medicine“, explained Dr Buchholz with regard to the current research results.

Original Publication

Münch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, Trkola A, Plückthun A, Büning H, Buchholz CJ (2015): Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun Feb 10 [Epub ahead of print].
http://www.nature.com/ncomms/2015/150210/ncomms7246/full/ncomms7246.html

The Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines in Langen near Frankfurt/Main, is a senior federal authority reporting to the Federal Ministry of Health (Bundesministerium für Gesundheit, BMG). It is responsible for the research, assessment, and marketing authorisation of biomedicines for human use and veterinary vaccines. Its remit also includes the authorisation of clinical trials and pharmacovigilance, i.e. recording and evaluation of potential adverse effects. Other duties of the institute include official batch control, scientific advice and inspections. In-house experimental research in the field of biomedicines and life science form an indispensable basis for the varied and many tasks performed at the institute. The PEI, with its roughly 800 staff, also has advisory functions at a national level (federal government, federal states (Länder)), and at an international level (World Health Organisation, European Medicines Agency, European Commission, Council of Europe etc.).

Weitere Informationen:

http://www.pei.de

Dr. Susanne Stöcker | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>