Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power up: growing neurons undergo major metabolic shift

13.07.2016

Our brains can survive only for a few minutes without oxygen. Salk Institute researchers have now identified the timing of a dramatic metabolic shift in developing neurons, which makes them become dependent on oxygen as a source of energy.

The findings, published July 12 in the journal eLife reveal a metabolic route thought to go awry in cancer and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.


Salk Institute researchers have now identified the timing of a dramatic metabolic shift in developing neurons, which makes them become dependent on oxygen as a source of energy. A key metabolic pathway must be switched off during neuron development, or else -- as is shown on the right -- fewer neurons (green) survive. The red cells are non-neural cells called glia.

Credit: Salk Institute

"There is relatively little understanding about how neuron metabolism is first established," says co-senior author Tony Hunter, holder of the Renato Dulbecco Chair and American Cancer Society Professor in Salk's Molecular and Cell Biology Laboratory. "Aside from enabling us to understand this process during neuronal development, the work also allows us to better understand neurodegenerative disease."

To send messages along neurons is energetically demanding, and the brain uses both oxygen and glucose intensely. The brain, for example, uses 20 percent of the body's glucose supply. The cell's energy-producing factories, called mitochondria, are scattered throughout the long, slender axons of neurons in order to provide all parts of the cell with a constant supply of energy. As the neurons get bigger, so do the number of mitochondria, according to the new study.

We make new neurons in the womb, and this process continues after birth. Even a few areas in the adult brain continue to make new neurons throughout life. "We assume that the metabolic shift we describe in this new study happens every time a progenitor cell turns into a neuron," says the study's first author Xinde Zheng, a Salk research associate.

The cells that eventually become neurons initially use a pathway called glycolysis, which is a major energy-producing process that takes place in the cytoplasm of the cell and turns glucose into energy in the form of adenosine triphosphate (ATP). At some point, however, the cells switch to a more efficient pathway called oxidative phosphorylation, a process that uses oxygen to produce ATP and occurs inside the mitochondria.

Hunter, Zheng, Salk's Leah Boyer and colleagues previously studied a rare metabolic disease called Leigh syndrome and recently published work showing that less ATP is produced in afflicted neurons. In the process of understanding that disease, they needed to recreate it in a dish, using cells with mutations in the DNA contained within mitochondria. But the team realized that it was not well understood how normally dividing cells generate energy while they divide and differentiate into new cell types.

In the new study, Hunter's team found that as a neuron precursor cell becomes a neuron, genes coding for key metabolic enzymes used in glycolysis switch off their expression,. Those changes work hand in hand to shut down glycolysis. All the while, key regulators of oxidative phosphorylation are ramping up.

Most surprising is that developing neurons must completely shut down glycolysis, says Hunter. When the researchers prevented that from happening, the neurons quickly died.

"This is the first comprehensive analysis of metabolic changes during neuronal differentiation, and the surprising reliance of neurons on oxidative phosphorylation for their sole energy source has clear implications for neuronal vulnerability with age," says co-senior investigator Rusty Gage, a professor in Salk's Laboratory of Genetics and holder of the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases.

The group plans to look more closely at how the metabolic genes are controlled in developing cells. They also plan to study neurons harboring energy defects associated with disease, such as Parkinson's disease, and different types of neurons to compare any finer differences in metabolism.

###

Other authors on the study are Mingji Jin, Jerome Mertens, Yongsung Kim, Li Ma, Li Ma, and Michael Hamm, all of the Salk Institute.

The research was supported by the National Institutes of Health, the G. Harold and Leila Y. Mathers Charitable Foundation, the JPB Foundation, the Leona M. and Harry B. Helmsley Charitable Trust, Annette Merle-Smith, the California Institute for Regenerative Medicine, and the Helmsley Center for Genomic Medicine.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Media Contact

Salk Communications
press@salk.edu
858-453-4100

 @salkinstitute

http://www.salk.edu 

Salk Communications | EurekAlert!

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>