Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pomegranate juice components inhibit cancer cell migration; in vivo testing planned

13.12.2010
Research presented at American Society of Cell Biology's 50th annual meeting in Philadelphia

Researchers at the University of California, Riverside (UCR), have identified components in pomegranate juice that seem to inhibit the movement of cancer cells and weaken their attraction to a chemical signal that has been shown to promote the metastasis of prostate cancer to the bone, according to a presentation today at the American Society for Cell Biology's 50th Annual Meeting in Philadelphia.

The researchers in the UCR laboratory of Manuela Martins-Green, Ph.D., plan additional testing in an in vivo model for prostate cancer to determine dose-dependent effects and side effects of the two components.

The effect, if any, of pomegranate juice on the progression of prostate cancer is controversial.

In a 2006 study of prostate cancer patients who daily drank an eight-ounce glass of pomegranate juice, UCLA researchers detected a decline in prostate-specific antigen (PSA) levels that suggested a potential slowing of cancer progression.

The UCLA researchers did not try to define the potential biological mechanism behind pomegranate juice's effects in the study.

In Sept. 2010, the Federal Trade Commission (FTC) filed suit against Pom Wonderful, the natural foods company that provided the pomegranate juice for the UCLA research and has supported other research on pomegranate juice. The FTC charged the company with making false and misleading claims about the juice's effects on health.

In previous studies, Martins-Green and her research team used a standardized concentration of pomegranate juice on two types of laboratory-cultured prostate cancer cells that were resistant to testosterone.

Resistance to the hormone indicates a potentially strong metastatic potential. The researchers noted not only increased cell death among the pomegranate juice-treated tumor cells but also increased cell adhesion and decreased cell migration in those cancer cells that had not died.

The Martins-Green lab next analyzed the fruit juice to identify the active ingredients that had a molecular impact on cell adhesion and migration in metastatic prostate cancer cells. Martins-Green, graduate student Lei Wang and undergraduate student Jeffrey Ho identified phenylpropanoids, hydrobenzoic acids, flavones and conjugated fatty acids.

"This is particularly exciting because we can now modify these naturally occurring components of the juice to improve their functions and make them more effective in preventing prostate cancer metastasis," said Martins-Green.

"Because the genes and proteins involved in movement of prostate cancer cells are essentially the same as those involved in movement of other types of cancer cells, the same modified components of the juice could have a much broader impact in cancer treatment," she said.

For more information:

ASCB contacts:

Cathy Yarbrough
sciencematter@yahoo.com
858-243-1814 (cell)
215-418-5306 (Dec. 11-16)
John Fleischman
jfleischman@ascb.org
513-929-4635 (before Dec. 11)
513-706-0212 (cell)
University of California at Riverside contacts:
Manuela Martins-Green, Ph.D.
909-787-2585
Manuela.martins@ucr.edu
Lei Wang
951-823-9782
pyruvateust@gmail.com
Iqbal Pittalwala
Senior Public Information Officer
951-827-6050
iqbal@ucr.edu
Martins-Green will present, "Specific Pomegranate Juice Components as Potential Inhibitors of Prostate Cancer Metastasis," Sunday, Dec. 12, 2010, 11:30 a.m.- 1:00 p.m., Cancer Therapeutics, Exhibit Halls A/B/C, Program 653, Board B1037.
Co-Authors: L. Wang, J. Ho, A. Alcon, M. M. Martins-Green
Department of Cell Biology and Neuroscience, University of California, Riverside

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>