Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poison in fish: chemists at the University of Graz discover new arsenic compounds in herring caviar

30.03.2016

We know that potentially toxic trace elements such as mercury and arsenic can accumulate in saltwater fish. They are bound into organic compounds, which can then be found in cellular components such as membranes. Chemists at the University of Graz from Univ.-Prof. Dr. Kevin Francesconi’s working group have discovered the existence of previously unknown arsenic compounds in herring roe. The study was published as a “Very Important Paper” in the renowned chemistry journal Angewandte Chemie.

When looking for arsenic compounds in the membranes of marine organisms, the scientists in Graz focussed on fish eggs because they have a particularly high concentration of membranes. In samples of herring roe from the Norwegian Sea, the researchers discovered two previously unknown groups of lipid-soluble arsenic compounds, which make up around 80 percent of the total content of this trace element.


In Seefisch, wie zum Beispiel dem Hering, können sich giftige Spurenelemente anreichern. Foto: pixabay


Fischeier sind besonders reich an Membranen. In diesen haben die Grazer ChemikerInnen neue Arsenverbindungen entdeckt. Foto: Marco Almbauer/Wikimedia Commons

“For the first time, we were able to prove that arsenic can be found in phosphatidylcholines,” reports Sandra Viczek, MSc, first author of the current publication.

“The discovery is important because phosphatidylcholines are core components of membranes and therefore play a biologically important role in the cell metabolism,” highlights Kevin Francesconi. “Furthermore, these types of arsenolipids probably make up over half of all the lipid-soluble arsenic in marine creatures,” adds Kenneth Jensen, the main author of the study.

Five new phosphatidylcholines containing arsenic were identified during the current study. However, Jensen believes that “there are probably many more of these complex natural substances.”

The next step is to clarify how poisonous the compounds discovered are. Francesconi and his team are investigating this topic in the framework of a research project financed by the Austrian Science Fund (FWF).

“In cooperation with toxicologists at the University of Potsdam, we are investigating what the high proportion of these substances in the membrane means from a toxicological point of view, i.e. what effect the phosphatidylcholines containing arsenic have on the cell metabolism.” A related question is how and why these compounds are biosynthesised in the fish in the first place.

The pioneering research results were made possible by the recently acquired high resolution mass spectrometer at the “NAWI Graz Central Lab – Environmental, Plant & Microbial Metabolomics“. This instrument allows the components to be fragmented into their constituent parts and identified with utmost precision.

Publication:
Arsenic-containing Phosphatidylcholines: a New Group of Arsenolipids Discovered in Herring Caviar
Sandra A. Viczek, Kenneth B. Jensen, and Kevin A. Francesconi
Angewandte Chemie International Edition, doi: 10.1002/anie.201512031

Contact:
Univ.-Prof. Dr. Kevin Francesconi
Institute of Chemistry at the University of Graz
Tel.: 0043 (0)316/380-5301
Email: kevin.francesconi@uni-graz.at

Weitere Informationen:

http://onlinelibrary.wiley.com/doi/10.1002/anie.201512031/abstract Publication in Angewandte Chemie

Mag. Gudrun Pichler | Karl-Franzens-Universität Graz
Further information:
http://www.uni-graz.at

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>