Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants with jobs

28.09.2015

Two University of Toronto Scarborough scientists have developed a new research framework for the agricultural sector that offers evidence-based understanding of the relationship between short-term yields, long-term sustainability and biodiversity.

In a paper published this week in the Journal of Applied Ecology, Marney Isaac, Canada Research Chair in Agroecosystems and Development and her co-author Adam Martin, describe how an approach known as "functional trait-based ecology" can apply to agricultural research and management. Rather than analyzing genetics or measuring yields, functional-trait research focuses on how plants both respond to and affect changes to their environment.


Plant diversity in agroecosystems -- coffee agroforestry in Central America.

Credit: Adam Martin - U of T Scarborough

"Historically, the way we try to understand how crop diversity influences yield and the environment has been limited," says Isaac. "We propose a rigorous approach rooted in ecological science to measure agricultural impacts."

Isaac and Martin's framework can help answer many questions like: How do certain species cycle nutrients? Can they repel certain pests? Do they mitigate the effects of drought?

"Environmental changes and agricultural practices can affect the size of crops, their leaf and root characteristics, and their reproductive patterns," says Isaac. "Trait-based approaches tell us about the causes and consequences of these changes - not just in terms of yield, but also in terms of how crops interact with other plants, insects, microbes, and their surrounding environment."

In other ecological contexts, functional-trait research has a long and successful track record, but it is only just starting to find purchase in agriculture.

"Trait-based studies have been instrumental in advancing our understanding of ecological patterns in natural and experimental ecosystems," says Martin. "We wanted to create a blueprint for applying this approach to agricultural systems."

"Commodity crops often result in heavily intensified monocultures where you have just one crop species covering a whole plot of land," says Martin. "Monocultures can result in terrible environmental conditions, but they tend to maximize yield."

Monocultures can be more vulnerable and less resilient to drought, disease, invasive species and herbivorous pests. But an effort solely aimed at increasing species diversity might not solve the problem. The authors cite the example of coffee plantations, which can become "Rainforest Alliance Certified" if they diversify sufficiently.

"You may have 15 different tree species and three crop species on your farm," says Martin. "This is a great start, but functional ecology could improve such certifications. Our framework can provide data about how to choose species that play complementary roles that better foster resilience and sustainability."

Martin and Isaac hope their framework will help researchers consolidate functional-trait data about the world's most common crops.

"Once consolidated, we expect this data can help us better understand how agro-ecosystems function, and ideally inform sustainable agricultural management strategies," says Isaac.

###

Funding for this research comes from Isaac's Canada Research Chair as well as from a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

Media Contact

Don Campbell
dcampbell@utsc.utoronto.ca
416-208-2938

 @UofTNews

http://www.utoronto.ca 

Don Campbell | EurekAlert!

Further reports about: Plants crop crop species ecology invasive species species

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>