Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants modulate accumulation of metabolites at organ level

14.11.2016

Scientists from the Max Planck Institute for Chemical Ecology in Jena and the University of Heidelberg, Germany, develop computational metabolomic approach to measure metabolic diversity in different plant tissues.

Scientists from the Max Planck Institute for Chemical Ecology in Jena and the University of Heidelberg, Germany, illuminated the diversity and different accumulation of chemical substances in the tissues of the ecological model plant Nicotiana attenuata.


Tobacco flower: In the pollen producing anthers metabolic specialization is particularly high in comparison to all other plant organs analyzed.

Danny Kessler / Max Planck Institute for Chemical Ecology

For their results, they used computational metabolomics and information theory. This approach was specifically designed for this study and enabled the researchers to study plant metabolism at the level of single organs.

This new method allows for a more efficient access to the diversity of plant metabolites and for a more rapid identification of the genes which regulate their biosynthesis. (Proceedings of the National Academy of Sciences of the United States of America, November 2016, DOI: 10.1073/pnas.1610218113)

Plants are master organic chemists. They are able to produce very complex blends of different chemical substances. The biosynthesis and the accumulation of plant secondary metabolites are physiologically adapted to the individual requirements in the respective plant tissues. A team of scientists led by Emmanuel Gaquerel from the University of Heidelberg and Ian Baldwin from the Max Planck Institute for Chemical Ecology has now analyzed the metabolome, the entire set of chemicals, in the tissues of the ecological model plant Nicotiana attenuata.

The following questions were of central interest: Which plant tissues exhibit distinct metabolic profiles, which plant secondary metabolites are primarily accumulated locally in the tissues of particular organs, and finally, how can this information contribute to the identification of the genes that regulate metabolite production?

To answer these questions, the researchers harnessed the emerging research field of metabolomics and developed new computational methods for the assessment of analytical data retrieved from the mass spectrometric substance analyses. The goal of metabolome research is to identify and quantify the entirety of metabolites of an organism and their interactions. “We implemented a workflow that allows metabolite spectra to be rapidly aligned so as to make predictions about metabolite identity,” Emmanuel Gaquerel explains. “Computational metabolomics encompasses all bioinformatics approaches that facilitate computer-based inferences on the annotation of unknown metabolites from large-scale complex metabolomics data.”

For their study, the scientists analyzed the metabolic profiles of 14 different dissected tissues of tobacco plants, such as the floral organs, the stem, leaves, seeds and roots. “We had expected that the metabolic profiles of floral organs would differ significantly from other parts of the plant. However, there were also considerable differences between the individual floral organs. The very high degree of metabolic specialization we found in the anthers of tobacco flowers came as a particular surprise,” Dapeng Li, first author of the study and a PhD student at the Max Planck Institute, reports.

The anthers belong to the stamens, which are considered the male parts of a flower. They contain the pollen sacs in which pollen is produced. Anthers contain specific phenolic derivatives, which have also been found in the pollen coat in previous studies. The biosynthesis of these phenolic derivatives and their accumulation in the anthers substantially contribute to the unique metabolic profile of the male reproduction organs.

The application of tools and concepts based on information theory approaches in order to score metabolic diversity facilitated new insights into the function of single substances in this study. The key idea is to consider tissue metabolic diversity as a type of information, like any other, which can be statistically analyzed. In order to link metabolic function to individual genes, the scientists developed an atlas of genes and secondary metabolites which share similar activation patterns in the different tissues of tobacco plants.

Based on these patterns, they were able to identify candidate genes which may be responsible for regulating the biosynthesis of ecologically-important secondary metabolite. Particularly with respect to metabolites whose biosynthesis has not yet been elucidated, this new approach has a trend-setting potential and will contribute considerably to further research in plant metabolism.

Ian Baldwin, director of the Department of Molecular Ecology at the Jena Max Planck Institute, contributed immensely to the fact that Nicotiana attenuata has become an important model organism for studying interactions between plants and their environment. “Plants modulate in a very sophisticated manner their accumulations of metabolites at tissue/organ levels. Elucidating how this is achieved is central if we are to understand how plants survive in nature,” Baldwin summarizes the results of the new study. [AO/KG]

Original Publication:
Li, D., Heiling, S., Baldwin, I. T., Gaquerel, E. (2016). Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proceedings of the National Academy of Sciences of the United States of America, Early Edition, DOI: 10.1073/pnas.1610218113
http://dx.doi.org/10.1073/pnas.1610218113

Further Information:
Prof. Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de

Dr. Emmanuel Gaquerel, Centre for Organismal Studies Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, +49 6221 54-5589, E-Mail emmanuel.gaquerel@cos.uni-heidelberg.de

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>