Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants' defensive responses have downstream effects on nearby ecosystems

18.03.2015

Chemical changes that occur in tree leaves after being attacked by insects and mammals can impact nearby streams, which rely on fallen plant material as a food source, report scientists from the University of Chicago Department of Ecology and Evolution. The study, published March 17 in the journal Proceedings of the Royal Society B, shows how interactions between terrestrial and aquatic ecosystems are an essential part of understanding ecological responses to climate change.

Graduate student Sara Jackrel and Timothy Wootton, PhD, professor in the Department of Ecology and Evolution, simulated herbivory, or the activity of insects eating leaves, on red alder trees in a forest on the Olympic Peninsula in Washington state.


This is a typical river reach on the Merrill & Ring Tree Farm, Olympic Peninsula, Washington.

Credit: Sara Jackrel

Their research showed caterpillars ate fewer leaves from the stressed trees than those that were left alone. Leaves from these stressed trees also decomposed much more slowly when submerged in nearby streams, and further results suggest that the trees funneled a valuable nutritional resource away from the leaves as a defensive response to animal attacks.

"Terrestrial herbivory could have innumerable effects on leaf chemistry, and our simulation had a very strong effect in streams," said Jackrel, the study's lead author. "The tree's response to herbivory had a cascading effect across an ecosystem boundary, into another trophic level entirely. The important finding was making that indirect link from a terrestrial system into an aquatic system."

Plants generate many defensive responses to being attacked by insects and other animals. Some produce tannins and compounds that are toxic or taste bad to discourage herbivores from eating them. Others may even release chemicals that attract predators for the particular insect attacking the plant.

Insects and microbe decomposers that live in streams depend on a variety of nutritionally diverse leaf litter as a food sources. They play no direct role in the interactions between trees and their herbivores, but the new study shows how the composition of those leaves is shaped by their activity,

During her fieldwork, Jackrel mimicked the activity of caterpillars by systematically punching holes in the alder leaves with an office hole punch. She also painted the leaves with methyl jasmonate, a chemical that trees release under stress, to enhance the defensive response to the hole punches. Some trees were fertilized with phosphorus, while others were not.

Jackrel then buried packages of leaves and placed others underwater in a stream to test how quickly they decomposed in both soil and water. Caterpillars were also allowed to feed on treated and untreated leaves to test their preferences.

Leaves from trees that received both fertilizer and the herbivory treatment decomposed the most slowly. Caterpillars and aquatic insects ate fewer of these leaves than those from untreated trees as well.

Nitrogen levels were also much lower in the treated leaves. Insects value nitrogen as a nutrient, and the study results suggest that trees alter nitrogen levels to deter them from eating more leaves, perhaps by storing it the trunk or roots.

Understanding how trees' defensive responses to natural herbivores impact nearby streams will help scientists better predict the effects of climate change and other human activity like logging and agriculture.

"With climate change, insect communities are going to change," Jackrel said. "So understanding fundamentally how these communities naturally affect leaf chemistry, and how that might affect stream systems, is a critical reference to have. Then we can work to predict how climate change, along with other anthropogenic changes, might be affecting aquatic systems."

###

The study, "Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function," was supported by the National Science Foundation, the U.S. Department of Education, the University of Chicago Hinds Fund and an Olympic National Resources grant.

About the University of Chicago Medicine

The University of Chicago Medicine & Biological Sciences is one of the nation's leading academic medical institutions. It comprises the Pritzker School of Medicine, a top 10 medical school in the nation; the University of Chicago Biomedical Sciences Division; and the University of Chicago Medical Center, which recently opened the Center for Care and Discovery, a $700 million specialty medical facility. Twelve Nobel Prize winners in physiology or medicine have been affiliated with the University of Chicago Medicine.

Visit our research blog at sciencelife.uchospitals.edu and our newsroom at uchospitals.edu/news.

Twitter @UChicagoMed

Facebook.com/UChicagoMed

Matt Wood | EurekAlert!

Further reports about: Ecosystem Plants activity aquatic downstream effects ecosystems herbivores herbivory insects leaves terrestrial

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>