Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants defend their territory with toxic substances

05.11.2015

Plants are stakeholders in a subtle and complex chemical warfare to secure optimal growth conditions. Although it has been known for decades that plants produce and release chemical substances to fight their neighbors, it has remained unclear how exactly these compounds act on other plants. A team of German and French scientists has been able to show that one particular class of plant toxins slows down the development of competing plants by specifically acting on the structure of their genome.

Plants are in a constant competition with their neighbors for limited resources such as light, nutrients and water. Only the fittest survive and reproduce. To defend their territory against invading competitors, plants employ so-called allelochemicals, toxic compounds that can inhibit growth and development of other plants. The existence of this chemical warfare, referred to as ‘allelopathy’, is widespread among many plant species, and has been known for a long time to scientists and agriculturists.


To have an advantage over their neighbors, some plant species release chemicals from their roots (e.g. DIBOA). These compounds can get degraded in the soil and turn into toxic substances.

Claude Becker, Sebastián Petersen (Max Planck Institute for Developmental Biology) and Markus Burkard (University Hospital Tübingen)

Plants are able to release chemical compounds from their roots into the soil, where the substances decay or are modified by microbes. Some of these products are toxic when the roots of neighboring plants take them up. Work by Sascha Venturelli and colleagues now sheds light on the inner workings of this plant chemical warfare (The Plant Cell).

Claude Becker, one of the leaders of the study, explains the importance of the findings: “The phenomenon has been known for years, and many classes of allelochemicals have been identified over the last decades, but for first time we now understand the molecular mechanism of such a ‘territorial behaviour’ of plants”.

The scientists investigated the role a specific class of plant secondary metabolites, the cyclic hydroxamic acids DIBOA and DIMBOA. These are released by several grass species, and their degradation products are well known for their phytotoxicity.

Through structural and biochemical analyses, followed by physiological experiments, Venturelli and colleagues could show that these compounds inhibit the activity of so-called histone deacetylases. These enzymes bind to histones, a group of proteins that together with DNA form the genetic material, also known as chromatin. Histone deacetylases remove acetyl side chains from these histones, causing compaction of the DNA and leading to a reduction in gene expression.

In the model plant Arabidopsis thaliana, the scientists found that inhibition of histone deacetylases by the plant toxins lead to more histone acetylation and an increase in gene expression, ultimately causing plant growth to slow down. The study thus not only presents the first molecular mechanism for allelopathy, but also illustrates how environmental toxins can alter chromatin structure and gene expression.

Allelochemicals are important regulators in natural and agricultural plant communities, and have repeatedly been associated with the success of invasive species in their new habitats. But there is more: “Herbal natural products in general hold great potential for the therapy of human diseases”, says Sascha Venturelli from the University Clinics Tübingen, medical scientist and first author of the study, and continues: “We have found that these particular compounds efficiently inhibit the growth of human cancer cells, too.”

Indeed some inhibitors of histone deacetylases have already been approved as anti-cancer drugs. Michael Bitzer and Ulrich Lauer, initiators and co-advisors of the study explain on-going efforts: “Clinical trials at the University Clinics Tübingen currently assess the efficacy of these plant toxins in cancer patients”. Understanding the mode of action of plant toxins could therefore also be of wider significance for medical research.

Contributing authors and institutes:
Sascha Venturelli, Alexander Berger, Kyra von Horn, Ulrich M. Lauer and Michael Bitzer from the Department of Internal Medicine I, Medical University Clinic, University of Tübingen, Germany;
Regina G. Belz from the Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany;
Andreas Kämper, André Wegner and Oliver Kohlbacher from the Applied Bioinformatics Group, University of Tübingen, Tübingen, Germany;
Alexander Böcker from the Evotec AG, Hamburg, Germany;
Gérald Zabulon and Fredy Barneche from the Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Paris, France;
Tobias Langenecker, Detlef Weigel and Claude Becker from the Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany

Source:
Venturelli et al.
Plants release precursors of histone deacetylase inhibitor to suppress growth of competitors
Advance Publication, The Plant Cell, November 2015 tpc.15.00585

Contact:
Claude Becker
E-mail: claude.becker@tuebingen.mpg.de

Nadja Winter (PR Officer)
Phone: +49 7071 601-444
E-mail: presse-eb@tuebingen.mpg.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00585.abstract
http://www.plantcell.org/content/early/2015/11/03/tpc.15.00916.full.pdf+html

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>