Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants defend their territory with toxic substances

05.11.2015

Plants are stakeholders in a subtle and complex chemical warfare to secure optimal growth conditions. Although it has been known for decades that plants produce and release chemical substances to fight their neighbors, it has remained unclear how exactly these compounds act on other plants. A team of German and French scientists has been able to show that one particular class of plant toxins slows down the development of competing plants by specifically acting on the structure of their genome.

Plants are in a constant competition with their neighbors for limited resources such as light, nutrients and water. Only the fittest survive and reproduce. To defend their territory against invading competitors, plants employ so-called allelochemicals, toxic compounds that can inhibit growth and development of other plants. The existence of this chemical warfare, referred to as ‘allelopathy’, is widespread among many plant species, and has been known for a long time to scientists and agriculturists.


To have an advantage over their neighbors, some plant species release chemicals from their roots (e.g. DIBOA). These compounds can get degraded in the soil and turn into toxic substances.

Claude Becker, Sebastián Petersen (Max Planck Institute for Developmental Biology) and Markus Burkard (University Hospital Tübingen)

Plants are able to release chemical compounds from their roots into the soil, where the substances decay or are modified by microbes. Some of these products are toxic when the roots of neighboring plants take them up. Work by Sascha Venturelli and colleagues now sheds light on the inner workings of this plant chemical warfare (The Plant Cell).

Claude Becker, one of the leaders of the study, explains the importance of the findings: “The phenomenon has been known for years, and many classes of allelochemicals have been identified over the last decades, but for first time we now understand the molecular mechanism of such a ‘territorial behaviour’ of plants”.

The scientists investigated the role a specific class of plant secondary metabolites, the cyclic hydroxamic acids DIBOA and DIMBOA. These are released by several grass species, and their degradation products are well known for their phytotoxicity.

Through structural and biochemical analyses, followed by physiological experiments, Venturelli and colleagues could show that these compounds inhibit the activity of so-called histone deacetylases. These enzymes bind to histones, a group of proteins that together with DNA form the genetic material, also known as chromatin. Histone deacetylases remove acetyl side chains from these histones, causing compaction of the DNA and leading to a reduction in gene expression.

In the model plant Arabidopsis thaliana, the scientists found that inhibition of histone deacetylases by the plant toxins lead to more histone acetylation and an increase in gene expression, ultimately causing plant growth to slow down. The study thus not only presents the first molecular mechanism for allelopathy, but also illustrates how environmental toxins can alter chromatin structure and gene expression.

Allelochemicals are important regulators in natural and agricultural plant communities, and have repeatedly been associated with the success of invasive species in their new habitats. But there is more: “Herbal natural products in general hold great potential for the therapy of human diseases”, says Sascha Venturelli from the University Clinics Tübingen, medical scientist and first author of the study, and continues: “We have found that these particular compounds efficiently inhibit the growth of human cancer cells, too.”

Indeed some inhibitors of histone deacetylases have already been approved as anti-cancer drugs. Michael Bitzer and Ulrich Lauer, initiators and co-advisors of the study explain on-going efforts: “Clinical trials at the University Clinics Tübingen currently assess the efficacy of these plant toxins in cancer patients”. Understanding the mode of action of plant toxins could therefore also be of wider significance for medical research.

Contributing authors and institutes:
Sascha Venturelli, Alexander Berger, Kyra von Horn, Ulrich M. Lauer and Michael Bitzer from the Department of Internal Medicine I, Medical University Clinic, University of Tübingen, Germany;
Regina G. Belz from the Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany;
Andreas Kämper, André Wegner and Oliver Kohlbacher from the Applied Bioinformatics Group, University of Tübingen, Tübingen, Germany;
Alexander Böcker from the Evotec AG, Hamburg, Germany;
Gérald Zabulon and Fredy Barneche from the Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Paris, France;
Tobias Langenecker, Detlef Weigel and Claude Becker from the Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany

Source:
Venturelli et al.
Plants release precursors of histone deacetylase inhibitor to suppress growth of competitors
Advance Publication, The Plant Cell, November 2015 tpc.15.00585

Contact:
Claude Becker
E-mail: claude.becker@tuebingen.mpg.de

Nadja Winter (PR Officer)
Phone: +49 7071 601-444
E-mail: presse-eb@tuebingen.mpg.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00585.abstract
http://www.plantcell.org/content/early/2015/11/03/tpc.15.00916.full.pdf+html

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>