Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants defend their territory with toxic substances

05.11.2015

Plants are stakeholders in a subtle and complex chemical warfare to secure optimal growth conditions. Although it has been known for decades that plants produce and release chemical substances to fight their neighbors, it has remained unclear how exactly these compounds act on other plants. A team of German and French scientists has been able to show that one particular class of plant toxins slows down the development of competing plants by specifically acting on the structure of their genome.

Plants are in a constant competition with their neighbors for limited resources such as light, nutrients and water. Only the fittest survive and reproduce. To defend their territory against invading competitors, plants employ so-called allelochemicals, toxic compounds that can inhibit growth and development of other plants. The existence of this chemical warfare, referred to as ‘allelopathy’, is widespread among many plant species, and has been known for a long time to scientists and agriculturists.


To have an advantage over their neighbors, some plant species release chemicals from their roots (e.g. DIBOA). These compounds can get degraded in the soil and turn into toxic substances.

Claude Becker, Sebastián Petersen (Max Planck Institute for Developmental Biology) and Markus Burkard (University Hospital Tübingen)

Plants are able to release chemical compounds from their roots into the soil, where the substances decay or are modified by microbes. Some of these products are toxic when the roots of neighboring plants take them up. Work by Sascha Venturelli and colleagues now sheds light on the inner workings of this plant chemical warfare (The Plant Cell).

Claude Becker, one of the leaders of the study, explains the importance of the findings: “The phenomenon has been known for years, and many classes of allelochemicals have been identified over the last decades, but for first time we now understand the molecular mechanism of such a ‘territorial behaviour’ of plants”.

The scientists investigated the role a specific class of plant secondary metabolites, the cyclic hydroxamic acids DIBOA and DIMBOA. These are released by several grass species, and their degradation products are well known for their phytotoxicity.

Through structural and biochemical analyses, followed by physiological experiments, Venturelli and colleagues could show that these compounds inhibit the activity of so-called histone deacetylases. These enzymes bind to histones, a group of proteins that together with DNA form the genetic material, also known as chromatin. Histone deacetylases remove acetyl side chains from these histones, causing compaction of the DNA and leading to a reduction in gene expression.

In the model plant Arabidopsis thaliana, the scientists found that inhibition of histone deacetylases by the plant toxins lead to more histone acetylation and an increase in gene expression, ultimately causing plant growth to slow down. The study thus not only presents the first molecular mechanism for allelopathy, but also illustrates how environmental toxins can alter chromatin structure and gene expression.

Allelochemicals are important regulators in natural and agricultural plant communities, and have repeatedly been associated with the success of invasive species in their new habitats. But there is more: “Herbal natural products in general hold great potential for the therapy of human diseases”, says Sascha Venturelli from the University Clinics Tübingen, medical scientist and first author of the study, and continues: “We have found that these particular compounds efficiently inhibit the growth of human cancer cells, too.”

Indeed some inhibitors of histone deacetylases have already been approved as anti-cancer drugs. Michael Bitzer and Ulrich Lauer, initiators and co-advisors of the study explain on-going efforts: “Clinical trials at the University Clinics Tübingen currently assess the efficacy of these plant toxins in cancer patients”. Understanding the mode of action of plant toxins could therefore also be of wider significance for medical research.

Contributing authors and institutes:
Sascha Venturelli, Alexander Berger, Kyra von Horn, Ulrich M. Lauer and Michael Bitzer from the Department of Internal Medicine I, Medical University Clinic, University of Tübingen, Germany;
Regina G. Belz from the Institute of Plant Production and Agroecology in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany;
Andreas Kämper, André Wegner and Oliver Kohlbacher from the Applied Bioinformatics Group, University of Tübingen, Tübingen, Germany;
Alexander Böcker from the Evotec AG, Hamburg, Germany;
Gérald Zabulon and Fredy Barneche from the Institut de Biologie de l’Ecole Normale Supérieure (IBENS), CNRS, Paris, France;
Tobias Langenecker, Detlef Weigel and Claude Becker from the Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany

Source:
Venturelli et al.
Plants release precursors of histone deacetylase inhibitor to suppress growth of competitors
Advance Publication, The Plant Cell, November 2015 tpc.15.00585

Contact:
Claude Becker
E-mail: claude.becker@tuebingen.mpg.de

Nadja Winter (PR Officer)
Phone: +49 7071 601-444
E-mail: presse-eb@tuebingen.mpg.de

Weitere Informationen:

http://www.plantcell.org/content/early/2015/11/03/tpc.15.00585.abstract
http://www.plantcell.org/content/early/2015/11/03/tpc.15.00916.full.pdf+html

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>