Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant roots in the dark see light

03.11.2016

Researchers from the Max Planck Institute for Chemical Ecology in Jena, Germany, and Seoul National University, South Korea, were able to show for the first time that roots react directly to light which is transmitted from the shoot to the underground parts of Arabidopsis thaliana plants. Roots can thus effectively adapt plant growth to the light conditions in the environment. (Science Signaling, November 2016, DOI: 10.1126/scisignal.aaf6530).

Light is not only a source of energy, but also an important signal which regulates many light-dependent growth processes in a plant in order to adapt it to its environment in the best possible way. Light is first detected by photoreceptors in the shoot of a plant. Physiological processes in the plant are mediated by light signaling molecules. For more than three decades, scientists have been speculating whether roots are also able to perceive light.


Photoreceptors in the roots are activated by light which is transmitted from the shoot to the underground roots through the stem.

Rakesh Santhanam, Angela Overmeyer / Max Planck Institute for Chemical Ecology

However, this hypothesis could never be proved until this new study was published. “Physicists from Korea and biologists from Jena teamed and combined knowledge from both disciplines in order to find out, whether plant vascular bundles could act as light optical fibers and transmit light from the shoot to the roots,” Sang-Gyu Kim, one of the first authors of the study and co-initiator of the project, describes the successful cooperation.

Previous studies had shown that a special photoreceptor in plants which detects light of the wavelength red/far-red is surprisingly also expressed in the roots. However, it remained unclear how this root photoreceptor was activated. In an interdisciplinary effort, molecular biologists and optical physicists developed a highly sensitive optical detector along with the idea to compare plants with “blind” and “sighted” roots. They used plants of the thale cress Arabidopsis thaliana, a model organism in plant research, which were genetically modified in a way that the photoreceptor was only silenced in their roots, but not in their shoots. Hence, these plants had “blind” roots.

The scientists grew these modified plants along with control plants; their roots were in the dark soil and their shoots exposed to light, just like in nature. The optical detector system was used to measure light which was transmitted in the stem down to the roots. “With this approach, we could show clearly and without ambiguity that light is transmitted into the roots via vascular bundles. Even if the intensity of the transmitted light was low, it was sufficient to activate the photoreceptors, trigger downstream light signaling, and influence growth in the control plants,” Chung-Mo Park, the leader of the project at Seoul National University, explains.

"These results are crucial for further research projects. Our work proves that roots are able to perceive light, even though they are usually found belowground. Photoreception in the roots triggers a signaling chain which influences plant growth, especially the root architecture,” says Ian Baldwin, leader of the study at the Max Planck Institute for Chemical Ecology in Jena. He already looks into the future: “There are more photoreceptors in the roots. Until now, it has remained largely unknown what their responsibilities in the roots are and how they interact with light signals which are transmitted from the shoots.”

It is of major importance for ecological research to show the relevance of this study for plants growing in their natural habitat. To find out, the scientists want to perform experiments with another plant species, the coyote tobacco Nicotiana attenuata, a model plant in ecology, which is adapted to an extremely strong exposition to light. The researchers propose that the newly found sensory modality of roots is enhancing the ecological performance of plants in nature, by allowing for a better timing of resource allocations for growth, reproduction and defense. [KG/AO]

Original Publication:
Lee, H.-J., Ha, J.-H., Kim, S.-G., Choi, H.-K., Kim, Z. H., Han, Y.-J., Kim, J.-I., Oh, Y., Fragoso, V., Shin, K., Hyeon, T., Choi, H.-G., Oh, K.-H., Baldwin, I. T., Park, C.-M. (2016). Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling. Vol. 9, Issue 452, pp. ra106
http://dx.doi.org/10.1126/scisignal.aaf6530

Further Information:
Prof. Ian T. Baldwin, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-1101, E-Mail baldwin@ice.mpg.de
Prof. Chung-Mo Park, Department of Chemistry, Seoul National University, Seoul, Korea 08826, +82 2 880-6640, E-Mail cmpark@snu.ac.kr

Contact and Media Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download high-resolution images via http://www.ice.mpg.de/ext/downloads2016.html

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=molecular-ecology Department of Molecular Ecology

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>