Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hormone 'switch' unravels chromatin to form flowers, penn biologists find

14.10.2015

Because plants cannot pick up and move, they have evolved a plethora of strategies to cope with environmental stresses, whether they bring a harsh spell of drought or a browsing deer.

One of these strategies is plants' ability to continue growing new, diverse organs, including roots, branches and flowers, throughout their lifespan. But of course flowers don't develop just anywhere on the plant; they only grow from certain cells, which must receive a particular signal to begin the process. While researchers knew that flower formation was governed by the activity of the hormone auxin, they didn't understand precisely how it signaled the plant to form blooms.


Instead of flowers, plants with mutations in certain chromatin remodeling genes developed pin-like structures (right).

Credit: University of Pennsylvania

Now University of Pennsylvania researchers have filled in the gaps and identified a hormone-mediated "chromatin switch" that directs a plant to form flowers. In the absence of auxin, genes that initiate flower formation are tucked away in tangled chromatin, a tightly packed bundle of DNA. But, in the hormone's presence, proteins are recruited to unravel chromatin and make the genes responsible for flower formation more accessible.

The findings could be useful in efforts to strategically boost flower formation as a means of increasing yield in agricultural crops. And the study's contribution to understanding basic mechanisms of chromatin regulation, which may be similar across species and even kingdoms of living things, could have implications for many biological processes, including human health.

... more about:
»flower »genes »hormone »proteins

"This one hormone auxin is very famous because it has many roles, in embryo, root and flower development, in vein formation, in growth -- it's doing all of these things," said Doris Wagner, senior author on the work and a professor of biology in Penn's School of Arts & Sciences. "The question is always, How can one hormone do all these different things? Now we see that, by helping open up chromatin, it can allow a variety of other proteins to come in and initiative these different pathways. All of a sudden these very diverse processes are not so hard to explain anymore."

Wagner collaborated with Penn's Miin-Feng Wu, Nobutoshi Yamaguchi, Jun Xiao and Yi Sang as well as Bastiaan Bargmann and Mark Estelle of the University of California, San Diego.

Their research is published in the journal eLife.

In work published in 2013, Wagner and colleagues began to piece together how auxin regulated flower formation. They already knew that auxin activated the transcription factor MONPTEROS, and went on to identify that factor's direct targets, which included three genes involved in flower development.

But the researchers believed the process was not that simple because those genes were packed tightly away in chromatin, which would prevent them from being activated. There must be another factor that makes those genes available to be transcribed, the team reasoned.

"So we looked on purpose for proteins that are required for making flowers and were also chromatin regulators that might overcome this repressive environment," Wagner said.

Performing experiments in Arabidopsis, the researchers showed that plants with double mutations in SWI/SNF proteins, BRM and SYD, which are known chromatin remodelers, failed to initiate flower formation. Because they can't make flowers, these plants had pointy "pin-like" forms.

The team also showed that BRM and SYD, which are part of a chromatin remodeling complex, bound to the same locations as MONOPTEROS does in the regulatory regions of various genes required for flower development. They also demonstrated that MONOPTEROS physically interacts with BRM and SYD, likely recruiting them to the proper site in the chromatin.

Once at the proper site, the team showed that BRM and SYD, in the presence of auxin, reshape chromatin in a way that makes the flower-formation genes more accessible for transcription and expression.

Wagner's group next artificially guided BRM and SYD to the correct locations in the genome in plant cells. Those cells showed increased expression of flower formation genes, just as cells exposed to auxin did.

When they repeated this experiment in a mutant plant that normally fails to form flowers, they were able to coax it to develop flowers, almost identically to a normal plant.

"We were very surprised to see the flowers come back so dramatically," Wagner said. "And, though we didn't study other aspects exhaustively, it appears that this chromatin-remodeling complex may also rescue leaf formation and perhaps some other plant development processes regulated by auxin."

The findings suggest that this process could be strategically manipulated in order to pack more flowers on one plant, potentially increasing agricultural yields.

There are signs that the auxin pathway and these SWI/SNF proteins are present even in ancient plants, so the process of recruiting chromatin remodelers could be universal in plants.

Auxin is not made in humans, but, as Wagner noted, the chromatin remodelers her team studied are and are known to be tumor suppressors -- proteins that, when mutated, can allow tumors to grow unchecked. Thus, it's conceivable that one could design a hormonal switch, using auxin, to regulate them.

Media Contact

Katherine Unger Baillie
kbaillie@upenn.edu
215-898-9194

 @Penn

http://www.upenn.edu/pennnews 

Katherine Unger Baillie | EurekAlert!

Further reports about: flower genes hormone proteins

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>