Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant hormone 'switch' unravels chromatin to form flowers, penn biologists find

14.10.2015

Because plants cannot pick up and move, they have evolved a plethora of strategies to cope with environmental stresses, whether they bring a harsh spell of drought or a browsing deer.

One of these strategies is plants' ability to continue growing new, diverse organs, including roots, branches and flowers, throughout their lifespan. But of course flowers don't develop just anywhere on the plant; they only grow from certain cells, which must receive a particular signal to begin the process. While researchers knew that flower formation was governed by the activity of the hormone auxin, they didn't understand precisely how it signaled the plant to form blooms.


Instead of flowers, plants with mutations in certain chromatin remodeling genes developed pin-like structures (right).

Credit: University of Pennsylvania

Now University of Pennsylvania researchers have filled in the gaps and identified a hormone-mediated "chromatin switch" that directs a plant to form flowers. In the absence of auxin, genes that initiate flower formation are tucked away in tangled chromatin, a tightly packed bundle of DNA. But, in the hormone's presence, proteins are recruited to unravel chromatin and make the genes responsible for flower formation more accessible.

The findings could be useful in efforts to strategically boost flower formation as a means of increasing yield in agricultural crops. And the study's contribution to understanding basic mechanisms of chromatin regulation, which may be similar across species and even kingdoms of living things, could have implications for many biological processes, including human health.

... more about:
»flower »genes »hormone »proteins

"This one hormone auxin is very famous because it has many roles, in embryo, root and flower development, in vein formation, in growth -- it's doing all of these things," said Doris Wagner, senior author on the work and a professor of biology in Penn's School of Arts & Sciences. "The question is always, How can one hormone do all these different things? Now we see that, by helping open up chromatin, it can allow a variety of other proteins to come in and initiative these different pathways. All of a sudden these very diverse processes are not so hard to explain anymore."

Wagner collaborated with Penn's Miin-Feng Wu, Nobutoshi Yamaguchi, Jun Xiao and Yi Sang as well as Bastiaan Bargmann and Mark Estelle of the University of California, San Diego.

Their research is published in the journal eLife.

In work published in 2013, Wagner and colleagues began to piece together how auxin regulated flower formation. They already knew that auxin activated the transcription factor MONPTEROS, and went on to identify that factor's direct targets, which included three genes involved in flower development.

But the researchers believed the process was not that simple because those genes were packed tightly away in chromatin, which would prevent them from being activated. There must be another factor that makes those genes available to be transcribed, the team reasoned.

"So we looked on purpose for proteins that are required for making flowers and were also chromatin regulators that might overcome this repressive environment," Wagner said.

Performing experiments in Arabidopsis, the researchers showed that plants with double mutations in SWI/SNF proteins, BRM and SYD, which are known chromatin remodelers, failed to initiate flower formation. Because they can't make flowers, these plants had pointy "pin-like" forms.

The team also showed that BRM and SYD, which are part of a chromatin remodeling complex, bound to the same locations as MONOPTEROS does in the regulatory regions of various genes required for flower development. They also demonstrated that MONOPTEROS physically interacts with BRM and SYD, likely recruiting them to the proper site in the chromatin.

Once at the proper site, the team showed that BRM and SYD, in the presence of auxin, reshape chromatin in a way that makes the flower-formation genes more accessible for transcription and expression.

Wagner's group next artificially guided BRM and SYD to the correct locations in the genome in plant cells. Those cells showed increased expression of flower formation genes, just as cells exposed to auxin did.

When they repeated this experiment in a mutant plant that normally fails to form flowers, they were able to coax it to develop flowers, almost identically to a normal plant.

"We were very surprised to see the flowers come back so dramatically," Wagner said. "And, though we didn't study other aspects exhaustively, it appears that this chromatin-remodeling complex may also rescue leaf formation and perhaps some other plant development processes regulated by auxin."

The findings suggest that this process could be strategically manipulated in order to pack more flowers on one plant, potentially increasing agricultural yields.

There are signs that the auxin pathway and these SWI/SNF proteins are present even in ancient plants, so the process of recruiting chromatin remodelers could be universal in plants.

Auxin is not made in humans, but, as Wagner noted, the chromatin remodelers her team studied are and are known to be tumor suppressors -- proteins that, when mutated, can allow tumors to grow unchecked. Thus, it's conceivable that one could design a hormonal switch, using auxin, to regulate them.

Media Contact

Katherine Unger Baillie
kbaillie@upenn.edu
215-898-9194

 @Penn

http://www.upenn.edu/pennnews 

Katherine Unger Baillie | EurekAlert!

Further reports about: flower genes hormone proteins

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>