Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant growth enhanced through promotion of pore opening

27.03.2014

By inducing the pore opening of leaves, researchers at Nagoya University’s ITbM developed a strategy for enhancing photosynthesis and plant growth, which may be applied to crops and fuel plants to support global food production and a sustainable low-carbon society.

By determining the key factor in regulating photosynthesis and plant growth, Professor Toshinori Kinoshita, Dr. Yin Wang and co-workers at Nagoya University’s Institute of Transformative Bio-Molecules (WPI-ITbM) have succeeded in developing a method to increase photosynthesis (carbon dioxide uptake) and plant growth through the promotion of stomatal opening.


Light induces stomatal opening. Abscisic acid (a phytohormone synthesis respond to drought stress), high carbon dioxide, dark may induce stomatal closure. Stomata pore is the essential pathway of carbon dioxide uptake for photosynthesis.

Copyright : ITbM, Nagoya University


When the guard cells are illuminated with sun light, phototropins respond to the blue light and transduce the light signal into the downstream, and then lead to the activation of the plasma membrane H+-ATPase through the phosphorylation. The activated H+-ATPase induces hyperpolarization of plasma membrane and provides driving force for K+ uptake through the K+ channel in the plasma membrane. Accumulation of K+ in guard cells induces the swelling of guard cells and stomatal opening.

Copyright : ITbM, Nagoya University


The TG plant produced larger and increased numbers of rosette leaves with about 42–63% greater fresh and dry weights than WT plants for 25-day (A~C). Moreover, the dry weights of total flowering stems in 45-day-old TG plants (D), including seeds, siliques, and flowers, were about 36–41% greater than those of the WT under the same growth conditions.

The study, published on the online Early Edition in the week of December 23, 2013 of Proceedings of the National Academy of Science (PNAS), is expected to contribute to the promotion of plant production and towards the development of a sustainable low-carbon society.

Stomata are small pores located on the surface of leaves that control gas exchange with the external environment, and are the primary inlet for the uptake of carbon dioxide (Figure 1). “Stomatal resistance, which suppresses gas exchange through the stomata, is considered to be the major limiting factor for carbon dioxide uptake by plants during photosynthesis,” explains Professor Kinoshita, “very few reports have existed focusing on the induction of stomatal opening. Therefore, we decided to develop a method to manipulate stomatal opening in view of increasing photosynthesis (carbon dioxide uptake) and plant production.”

Kinoshita’s group has already revealed some of the key factors that mediate stomatal opening (Figure 2). The plasma membrane proton (H+)-ATPase or proton pump, an enzyme creating electrochemical gradients in the cell membranes of plants, has been identified as one of the key components.

“An increase in photosynthesis (carbon dioxide uptake) by approximately 15% and a 1.4~1.6 times increase in plant growth of Arabidopsis plants was observed by enhanced stomatal opening achieved through overexpression of the proton pump in guard cells that surround the stomata pore,” elaborates Professor Kinoshita (Figure 3).

Professor Kinoshita and his co-workers envisage that application of this method will contribute to the increase in the production of crops and fuel plants as well as towards the reduction of carbon dioxide in the atmosphere. Professor Kinoshita states, “Identifying that the manipulation of stomatal opening is the key limiting factor in photosynthesis and plant growth enables us to consider strategies to solve current issues in food production and carbon emissions.”


This article “Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth” by Yin Wang, Ko Noguchi, Natsuko Ono, Shin-ichiro Inoue, Ichiro Terashima, and Toshinori Kinoshita, is published on the online Early Edition in the week of December 23, 2013 in Proceedings of the National Academy of Science (PNAS).
PNAS 2014, 111, 533-538 DOI: 10.173/pnas.1305438111

This work was supported in part by the Advanced Low Carbon Technology Research Development Program from the Japan Science and Technology Agency and conducted with Professor Ichiro Terashima and Associate Professor Ko Noguchi of the University of Tokyo.

The following program supported this work.
Japan Science and Technology Agency (JST) Strategic Basic Research Program
Advanced Low Carbon Technology Research and Development Program (ALCA)
Research Project: Promotion of photosynthesis and plant productivity through manipulation of stomatal aperture
Research Representative: Professor Toshinori Kinoshita (Nagoya University Institute of Transformative Bio-Molecules)
Research Period: February 2010 – March 2016 (expected)
The JST ALCA program contributes to the reduction of greenhouse gas emissions in the mid and long term and to the realization of a wealthy, low carbon society, aiming to make conceptual breakthroughs and creating “Game-Changing Technology”. ALCA promotes R&D of new basic high-potential scientific knowledge and discovery in order to realize the continual and steady reduction of greenhouse gas emissions.

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, the ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology in a Mix-Lab system, where international young researchers from multidisciplinary fields work together. Through these endeavors, the ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on society.


Author Contact
Professor Toshinori Kinoshita
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan
TEL/FAX: +81-52-789-4778
E-mail: kinoshita@bio.nagoya-u.ac.jp

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: ayako.miyazaki@itbm.nagoya-u.ac.jp

ITbM Press Office
E-mail: press@itbm.nagoya-u.ac.jp

Associated links

Journal information

Proceedings of the National Academy of Science (PNAS) 2014, 111, 533-538

Funding information

JST ALCA

Ayako Miyazaki | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: Nagoya PNAS Science Technology dioxide emissions greenhouse photosynthesis stomatal

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>