Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant growth enhanced through promotion of pore opening

27.03.2014

By inducing the pore opening of leaves, researchers at Nagoya University’s ITbM developed a strategy for enhancing photosynthesis and plant growth, which may be applied to crops and fuel plants to support global food production and a sustainable low-carbon society.

By determining the key factor in regulating photosynthesis and plant growth, Professor Toshinori Kinoshita, Dr. Yin Wang and co-workers at Nagoya University’s Institute of Transformative Bio-Molecules (WPI-ITbM) have succeeded in developing a method to increase photosynthesis (carbon dioxide uptake) and plant growth through the promotion of stomatal opening.


Light induces stomatal opening. Abscisic acid (a phytohormone synthesis respond to drought stress), high carbon dioxide, dark may induce stomatal closure. Stomata pore is the essential pathway of carbon dioxide uptake for photosynthesis.

Copyright : ITbM, Nagoya University


When the guard cells are illuminated with sun light, phototropins respond to the blue light and transduce the light signal into the downstream, and then lead to the activation of the plasma membrane H+-ATPase through the phosphorylation. The activated H+-ATPase induces hyperpolarization of plasma membrane and provides driving force for K+ uptake through the K+ channel in the plasma membrane. Accumulation of K+ in guard cells induces the swelling of guard cells and stomatal opening.

Copyright : ITbM, Nagoya University


The TG plant produced larger and increased numbers of rosette leaves with about 42–63% greater fresh and dry weights than WT plants for 25-day (A~C). Moreover, the dry weights of total flowering stems in 45-day-old TG plants (D), including seeds, siliques, and flowers, were about 36–41% greater than those of the WT under the same growth conditions.

The study, published on the online Early Edition in the week of December 23, 2013 of Proceedings of the National Academy of Science (PNAS), is expected to contribute to the promotion of plant production and towards the development of a sustainable low-carbon society.

Stomata are small pores located on the surface of leaves that control gas exchange with the external environment, and are the primary inlet for the uptake of carbon dioxide (Figure 1). “Stomatal resistance, which suppresses gas exchange through the stomata, is considered to be the major limiting factor for carbon dioxide uptake by plants during photosynthesis,” explains Professor Kinoshita, “very few reports have existed focusing on the induction of stomatal opening. Therefore, we decided to develop a method to manipulate stomatal opening in view of increasing photosynthesis (carbon dioxide uptake) and plant production.”

Kinoshita’s group has already revealed some of the key factors that mediate stomatal opening (Figure 2). The plasma membrane proton (H+)-ATPase or proton pump, an enzyme creating electrochemical gradients in the cell membranes of plants, has been identified as one of the key components.

“An increase in photosynthesis (carbon dioxide uptake) by approximately 15% and a 1.4~1.6 times increase in plant growth of Arabidopsis plants was observed by enhanced stomatal opening achieved through overexpression of the proton pump in guard cells that surround the stomata pore,” elaborates Professor Kinoshita (Figure 3).

Professor Kinoshita and his co-workers envisage that application of this method will contribute to the increase in the production of crops and fuel plants as well as towards the reduction of carbon dioxide in the atmosphere. Professor Kinoshita states, “Identifying that the manipulation of stomatal opening is the key limiting factor in photosynthesis and plant growth enables us to consider strategies to solve current issues in food production and carbon emissions.”


This article “Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth” by Yin Wang, Ko Noguchi, Natsuko Ono, Shin-ichiro Inoue, Ichiro Terashima, and Toshinori Kinoshita, is published on the online Early Edition in the week of December 23, 2013 in Proceedings of the National Academy of Science (PNAS).
PNAS 2014, 111, 533-538 DOI: 10.173/pnas.1305438111

This work was supported in part by the Advanced Low Carbon Technology Research Development Program from the Japan Science and Technology Agency and conducted with Professor Ichiro Terashima and Associate Professor Ko Noguchi of the University of Tokyo.

The following program supported this work.
Japan Science and Technology Agency (JST) Strategic Basic Research Program
Advanced Low Carbon Technology Research and Development Program (ALCA)
Research Project: Promotion of photosynthesis and plant productivity through manipulation of stomatal aperture
Research Representative: Professor Toshinori Kinoshita (Nagoya University Institute of Transformative Bio-Molecules)
Research Period: February 2010 – March 2016 (expected)
The JST ALCA program contributes to the reduction of greenhouse gas emissions in the mid and long term and to the realization of a wealthy, low carbon society, aiming to make conceptual breakthroughs and creating “Game-Changing Technology”. ALCA promotes R&D of new basic high-potential scientific knowledge and discovery in order to realize the continual and steady reduction of greenhouse gas emissions.

About WPI-ITbM (http://www.itbm.nagoya-u.ac.jp/)
The World Premier International Research Center Initiative (WPI) for the Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. As part of the Japanese science ministry’s MEXT program, the ITbM aims to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology in a Mix-Lab system, where international young researchers from multidisciplinary fields work together. Through these endeavors, the ITbM will create “transformative bio-molecules” that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on society.


Author Contact
Professor Toshinori Kinoshita
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan
TEL/FAX: +81-52-789-4778
E-mail: kinoshita@bio.nagoya-u.ac.jp

Public Relations Contact
Dr. Ayako Miyazaki
Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University
Furo-Cho, Chikusa-ku, Nagoya 464-8601, Japan
TEL: +81-52-789-4999 FAX: +81-52-789-3240
E-mail: ayako.miyazaki@itbm.nagoya-u.ac.jp

ITbM Press Office
E-mail: press@itbm.nagoya-u.ac.jp

Associated links

Journal information

Proceedings of the National Academy of Science (PNAS) 2014, 111, 533-538

Funding information

JST ALCA

Ayako Miyazaki | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: Nagoya PNAS Science Technology dioxide emissions greenhouse photosynthesis stomatal

More articles from Life Sciences:

nachricht IU-led study reveals new insights into light color sensing and transfer of genetic traits
06.05.2016 | Indiana University

nachricht Thievish hoverfly steals prey from carnivorous sundews
06.05.2016 | Staatliche Naturwissenschaftliche Sammlungen Bayerns

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Expanding tropics pushing high altitude clouds towards poles, NASA study finds

06.05.2016 | Earth Sciences

IU-led study reveals new insights into light color sensing and transfer of genetic traits

06.05.2016 | Life Sciences

Thievish hoverfly steals prey from carnivorous sundews

06.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>