Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plant Defense as a Biotech Tool

25.11.2015

Against voracious beetles or caterpillars plants protect themselves with cyanide. Certain enzymes release the toxic substance when the plant is chewed. These HNL-called enzymes are also important for industry. acib found a new biocatalyst in a fern which outshines all other HNL-type enzymes on the market.

Defense strategies are not only important in chess or military tactics but also in nature. Especially plants are masters in this discipline. Some stone fruit, almond trees or even ferns defend their young buds against feeding pests with cyanide.


acib-researcher Elisa Lanfranchi searching for fern probes in the woods.

acib

The poison expels the greatest enemy. This is due to an enzyme called hydroxynitrile lyase (HNL), which can release molecularly stored hydrogen cyanide.

What is useful for the plants, is also in demand in industry where the reverse reaction of the HNL-enzymes allows to bind cyanide to different molecules. This creates a double benefit. On the one hand, it is possible to recycle unwanted cyanide wastes, which for example are generated during the production of acrylonitrile.

Acrylonitrile is not only used in adhesives, it is also the raw material for polyacrylonitrile or "acrylic", an important fiber for textiles. On the other hand, industry gains valuable building blocks for pharmaceutical agents or the vitamin synthesis. The extremely high specificity of the HNL-enzymes makes them so useful for industrial application. Ideally, through biocatalysis valuable products are derived from inexpensive precursors.

HNL-enzymes have a fine tradition in industry. The first HNL enzymes have been successfully developed in the mid-1990s at Graz University of Technology (TU Graz) and were used industrially for the production of insect repellents.

Important improvements in the synthesis of high-value products aroused more industrial interest. The early enzymes certainly can’t meet all of today’s requirements, so researchers are searching for new HNL biocatalysts. Within the framework of the EU project KYROBIO, which deals with production technologies for new molecules, acib-researchers have successfully looked for those bio-tools.

SMELL ENZYME ACTIVITY

The acib-researchers Margit Winkler, Elisa Lanfranchi and Anton Glieder finally made a find in the white rabbit's foot fern, where the scientists sniffed enzyme activity. "When you rub a young fern leave between the fingers, it smells of hydrocyanic acid and benzaldehyde (similar to marzipan), indicating that there is enzyme activity", explains Margit Winkler, "knowing that ferns show the desired activity, we have been searching in the woods and in commercially available plants".

In three and a half years the acib-researchers in Graz have kept a close eye on eligible enzymes, examined their structure, produced the biocatalysts biotechnologically and tested their activity. Finally, the enzymes of a commercial rabbit’s-foot fern from the hardware store were the most promising. The Styrian bracken fern also showed activity and is currently being studied in more detail.

The new enzyme has an extremely high activity, although it is not even optimized. "Our new HNL is more efficient and simpler to handle than those previously used, because it is a small, uncomplicated enzyme", says Anton Glieder (TU Graz, acib). These results are a perfect basis for the industrial utilization. The range of applications is huge: It includes everything from crop protection to the production of repellents against mosquitoes and Co.

The acib-method used for bioprospecting of enzyme activities was published in the “Current Biotechnology” journal recently: http://goo.gl/6ZAWqt

About acib
The Austrian Centre of Industrial Biotechnology (acib) is an international research centre for industrial biotechnology with locations in Vienna, Graz, Innsbruck, Tulln, Hamburg and Bielefeld (D), Pavia (I), Barcelona (E) and Rzeszow (P). acib sees itself as a scientific and industrial network of 130+ partners, including 3M, Biomin, Boehringer Ingelheim RCV, DSM, DPx, Lonza, Sandoz or VTU Technology.
At acib, 200+ employees work on more than 70 research projects with the final goal to replace conventional industrial processes and products by more environmentally friendly and more economical approaches.
acib is owned by the University of Natural Resources and Life Sciences, Graz University of Technology, the Universities of Innsbruck and Graz and the Styrian Joanneum Research. acib is financed by industrial and public contributions. The latter come from the Austrian Research Promotion Agency of the Republic of Austria (FFG), Standortagentur Tirol, Styrian Business Promotion Agency (SFG), the province of Lower Austria and the Vienna Business Agency.

Further Inquiry:
DI Dr. Margit Winkler, acib, +43 316 873 9333, margit.winkler@acib.at
DI Thomas Stanzer MA, public relations/acib, +43 316 873 9312, thomas.stanzer@acib.at

Weitere Informationen:

http://www.acib.at
http://goo.gl/6ZAWqt

Thomas Stanzer | idw - Informationsdienst Wissenschaft

Further reports about: Biotechnology activity enzyme enzyme activity enzymes synthesis

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>