Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pictured together for the first time: A chemokine and its receptor

23.01.2015

Researchers capture 3-D structure of a molecular interaction that influences cancer, inflammation and HIV infection

Researchers at University of California, San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Bridge Institute at the University of Southern California report the first crystal structure of the cellular receptor CXCR4 bound to an immune signaling protein called a chemokine. The structure, published Jan. 22 in Science, answers longstanding questions about a molecular interaction that plays an important role in human development, immune responses, cancer metastasis and HIV infections.


The newly solved structure of the CXCR4 receptor (black) in complex with a chemokine (purple surface). The background shows cell migration, a process driven by chemokines interacting with receptors on cell surfaces.

Credit: Katya Kadyshevskaya, USC

"This new information could ultimately aid the development of better small molecular inhibitors of CXCR4-chemokine interactions -- inhibitors that have the potential to block cancer metastasis or viral infections," said Tracy M. Handel, PhD, professor of pharmacology at UC San Diego and senior author of the study.

CXCR4 is a receptor that sits on the outer surface of cells, sticking out like an antenna. When it receives a message, in the form of signaling molecules called chemokines, the receptor binds the chemokines and transmits the message to the inside of the cell. This signal relay helps cells migrate normally during development and inflammation. But CXCR4 signaling can also play a role in abnormal cell migration, such as when cancer cells metastasize. CXCR4 is infamous for another reason: HIV uses it to bind and infect human immune cells.

Despite its far-reaching consequences, researchers have long lacked data to show how exactly the CXCR4-chemokine interaction occurs, or even how many CXCR4 receptors a single chemokine molecule might simultaneously engage. This is because membrane receptors like CXCR4 are exceptionally challenging structural targets. The difficulty dramatically increases when studying such receptors in complexes with the proteins they bind.

To overcome these experimental challenges, Handel's team used a novel approach. They combined computational modeling and a technique known as disulfide trapping to stabilize the complex. Once stabilized, the researchers were able to use X-ray crystallography to determine the CXCR4-chemokine complex's 3D atomic structure.

This is the first time that a receptor like CXCR4 has been crystallized with a protein binding partner and the results revealed several new insights. First, the new crystal structure shows that one chemokine binds to just one receptor. Additionally, the structure reveals that the contacts between the receptor and its binding partner are more extensive than previously thought -- it is one very large contiguous surface of interaction rather than two separate binding sites.

"The plasticity of the CXCR4 receptor -- its ability to bind many unrelated small molecules, peptides and proteins -- is remarkable," said Irina Kufareva, PhD, a computational scientist at UC San Diego and co-corresponding author of the study. "Our understanding of this plasticity may impact the design of therapeutics with better inhibition and safety profiles."

"With more than 800 members, seven-transmembrane receptors like CXCR4 are the largest protein family in the human genome," added Raymond Stevens, PhD, provost professor and director of the Bridge Institute at the University of Southern California and co-corresponding author. "Each new structure opens up so many doors to understanding different aspects of human biology, and this time it is about chemokine signaling."

###

Study co-authors include Ling Qin, Lauren G. Holden, Yi Zheng, Chunxia Zhao and Ruben Abagyan, UC San Diego Skaggs School of Pharmacy; Chong Wang, Gustavo Fenalti, Huixian Wu, Gye Won Han, The Scripps Research Institute; and Vadim Cherezov, University of Southern California (previously at The Scripps Research Institute).

This research was made possible by the PSI:Biology program funded by the National Institute of General Medical Sciences at the National Institutes of Health (NIH). This research was also funded, in part, by NIH grants R01GM071872, U01GM094612, R01GM081763, R21AI101687, U54GM094618, Y1-CO-1020 and Y1-GM-1104, and the Pharmaceutical Research and Manufacturers of America Foundation.

Media Contact

Heather Buschman
hbuschman@ucsd.edu
619-543-6163

 @UCSanDiego

http://www.ucsd.edu 

Heather Buschman | EurekAlert!

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>