Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perseus translates proteomics data

27.07.2016

Do you speak -omics? If you don't, Perseus – www.perseus-framework.org might be able to help you. Researchers from the Max Planck Institute of Biochemistry in Martinsried have developed this free software platform for users of high-throughput techniques, such as mass spectrometry, in order to translate raw biological data into relevant findings. As reported in the current issue of Nature Methods, molecular signatures from cells, tissue and body fluids can be identified and characterized on this platform without the need for bioinformatic training. Perseus was designed to deal with proteomic studies. It has also proven itself in other molecular studies and will be expanded accordingly.

Do you speak -omics? If you don't, Perseus – www.perseus-framework.org might be able to help you. Researchers in Martinsried have developed this free software platform for users of high-throughput techniques, such as mass spectrometry, in order to translate raw biological data into relevant findings.


Researchers in the life sciences can now use the free software platform www.perseus-framework.org to analyze raw data from high-throughput techniques.

Tyanova, Krause © MPI of Biochemistry

As reported in the current issue of Nature Methods, molecular signatures from cells, tissue and body fluids can be identified and characterized on this platform without the need for bioinformatic training. Perseus was designed to deal with proteomic studies in which data on thousands of proteins is processed. It has, however, also proven itself in other molecular studies and will be expanded accordingly.

Absolutely nothing in an organism works without proteins. These molecules operate as molecular machines, act as building materials and appear in a variety of other roles. However, they are rarely lone warriors, with the result that analyzing the sum total of all proteins in a cell, a tissue, a body fluid or even in an entire organism is essential.

This can establish when and where a particular molecule appears in what quantity and with whom it interacts. Corresponding approaches exist for other biological molecules as well. Modern high-throughput techniques such as mass spectrometry provide the necessary raw data, often from several thousand different proteins.

Meaningful and relevant relationships need to be extracted and interpreted from these mountains of data. Given the huge quantity of raw data, this is now possible only with the help of computer-based methods. “These steps have become a bottleneck in high-throughput studies,” says Jürgen Cox from the Max Planck Institute of Biochemistry in Martinsried, who leads the development of the Perseus platform.

“We assume that there are still a lot of potentially important findings hidden in existing proteomics data only because the appropriate computer methods are technically too complex or the data does not end up with the researchers who could grasp the biological importance of the results.”

Cox and his team have therefore ensured that individual algorithms no longer have to find their way to the right laboratories. Instead, researchers can collect their software where they need it at a central point. Among other things, the Perseus platform allows highly varying protein amounts to be screened and analyzed.

It can quantify proteins and capture their interactions and modifications. The platform incorporates statistical methods, which identify patterns, analyze time series data, test multiple hypotheses and compare data obtained from different techniques.

No previous knowledge or special training is required as the platform is an interactive environment involving user participation and featuring highly intuitive operability. The site features helpful descriptions of the functions and parameters, while YouTube videos explaining how to use the platform and a Google group with more than 1,400 active users also provide assistance. “Perseus successfully completed the first pilot tests, also in extremely complex interdisciplinary investigations,” as Cox relates. “In fact, the software not only runs on proteomic data, but also in other large data sets. In future, we will adapt the programs for metabolomic studies.”

Original publication:
S. Tyanova, T. Temu, P. Sinitcyn, A. Carlson, M.Y. Hein, T. Geiger, M. Mann & J. Cox: The Perseus computational platform for comprehensive analysis of (prote)omics data, Nature Methods, June 2016
DOI: 10.1038/nmeth.3901

Contact:
Prof. Jürgen Cox, PhD
Computational Systems Biochemistry
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: cox@biochem.mpg.de
www.biochem.mpg.de/cox

Dr. Christiane Menzfeld
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89 8578-2824
E-Mail: pr@biochem.mpg.de
www.biochem.mpg.de

Weitere Informationen:

http://www.biochem.mpg.de/en - homepage max planck institute of biochemistry
http://www.biochem.mpg.de/cox - homepage research group "Computational Systems Biochemistry“ (Jürgen Cox)

Dr. Christiane Menzfeld | Max-Planck-Institut für Biochemie

Further reports about: Biochemie Biochemistry Cox Max Planck Institute Max-Planck-Institut Perseus

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>