Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Penn study shows how misfolded proteins are selected for disposal


Research has implications for understanding brain diseases caused by clumps of misshapen molecules

It's almost axiomatic that misfolded proteins compromise how cells normally function and cause debilitating human disease, but how these proteins are detected and degraded within the body is not well understood. Neurodegenerative diseases – including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (Lou Gehrig's disease), Huntington's disease, and spinocerebellar ataxias – exact a devastating toll on aging populations throughout the world.

This is a model for protein quality control by the PML-RNF4 system.

Credit: Lili Guo, Ph.D., Perelman School of Medicine, University of Pennsylvania; Molecular Cell

"Yet, there is virtually no cure for any of these diseases, and clinical trials have yielded mostly disappointing results, indicating that investigators are missing something fundamental about these diseases," says Xiaolu Yang, PhD, professor of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania. All of these diseases are caused by the accumulation of toxic misfolded proteins in different types of neurons. "However, our knowledge about how cells normally remove these proteins, an issue fundamental to understanding what goes wrong in neurodegenerative diseases, is very limited."

Yang and first author Lili Guo, PhD, who was a doctoral student in the Yang lab, identified a protein recycling pathway in mammalian cells that removes misfolded proteins. Their findings appear online today in Molecular Cell ahead of the print edition. They also demonstrated this pathway's role in protecting against neurodegenerative diseases in an animal model. Guo is now a postdoctoral fellow in another Perelman School lab.

Proteins are the work horses of the cells. They are the most abundant macromolecules, extremely versatile in their functions and critically important for virtually all biological processes. However, proteins are also highly prone to misfolding due to genetic mutations, synthetic inaccuracies, and irreparable damages. What's more, the half-life of many proteins is relatively short, from a few minutes to a few hours, necessitating their continued synthesis. As such this puts a burden on the cell to maintain quality control in the correct folding of proteins.

"This paper resolves a long-standing question in protein quality control of how misfolded proteins are precisely selected for degradation," notes Yang. "This newly described system could be a valuable target for treating neurodegenerative diseases."

Two-Staged Recycling

In any normally functioning cell, two systems maintain protein quality. First, chaperone proteins, like fingers that fold paper into origami shapes, guide amino acid chains in folding into their final, proper protein forms. Second, the recycling systems dispose of misfolded proteins and ultimately breaks them up into individual amino acids. This system involves the proteasome, a protein complex found throughout the cytoplasm and nucleus of cells. "But it is unclear how misshapen proteins are recognized and shuttled to the proteasome to be degraded. This study moves the field forward because we showed that the system is common for many types of misfolded proteins," notes Yang.

In addition to identifying the step-by-step molecular players of the system that eliminates misfolded proteins, they also defined the system's method of action. The mechanism of action is a relay system with two proteins.

The first protein, PML/TRIM19, recognizes features of misfolded proteins such as exposed water-phobic inner cores, which stick out and enhance the forming of toxic protein clumps. PML selectively interacts with misfolded proteins by recognizing this and other distinct features and tags the misfolded proteins with chains of a small protein called SUMO (small ubiquitin-like modifier). The SUMO-modified misfolded proteins are then recognized by the second protein, RNF4, which tags them with chains of another small protein called ubiquitin. The ubiquitin chain is a signal that can be recognized by the barrel-shaped proteasome, leading to the degradation of misfolded proteins.

The team then went on to demonstrate the physiological importance of the elimination system using a mouse model of spinocerebellar ataxia 1 (SCA1), a fatal neurological disorder that causes problems with movement and balance. Mutations in the ATXN1 gene cause SCA1, which involves repeated segments of the DNA building blocks cytosine (C), adenine (A), and guanine (G) that appear multiple times in a row in the gene, which encodes a tract of contiguous glutamine amino acids. Normally, the CAG segment is repeated 4 to 39 times within the gene. In SCA1, the CAG segment is repeated 40 to more than 80 times, which leads to an abnormally long ataxin-1 protein that folds into the wrong 3-dimensional shape and forms clumps within the nucleus. The team showed that a PML deficiency exacerbates both the behavioral and neuropathological defects caused by the expanded CAG repeat in the SCA1 mouse, indicating that PML normally operates to protect against neurodegeneration.

The PML protein is also involved in the formation of tumors, and that's how Yang, a cancer biologist, got involved in this type of research.

"The knowledge gained from this project now provides for the possibility of new therapeutic targets for neurodegenerative diseases. Perhaps new drugs could enhance the elimination system by increasing the action of PML or RNF4, or could inhibit the inhibitors of the SUMO and ubiquitin tagging process," says Yang


Other co-authors are Alex Glavis-Bloom, Michael D. Brewer, James Shorter, Aaron D. Gitler, now at Stanford Medical Center, and Benoit I. Giasson, now at the University of Florida.

The research was supported in part by grants from the National Cancer Institute (CA088868) and the National Institute of General Medical Sciences (GM060911).

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $392 million awarded in the 2013 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2013, Penn Medicine provided $814 million to benefit our community.

Karen Kreeger | Eurek Alert!

Further reports about: CAG Medicine PML amino chains diseases misfolded neurodegenerative proteasome proteins

More articles from Life Sciences:

nachricht Supercoiled DNA is far more dynamic than the 'Watson-Crick' double helix
13.10.2015 | University of Leeds

nachricht New Oregon approach for 'nanohoops' could energize future devices
13.10.2015 | University of Oregon

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>