Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Researchers Develop Technique for Measuring Stressed Molecules in Cells

04.05.2011
Biophysicists at the University of Pennsylvania have helped develop a new technique for studying how proteins respond to physical stress and have applied it to better understand the stability-granting structures in normal and mutated red blood cells.

The research was conducted by Dennis Discher and Christine Krieger in the Molecular and Cell Biophysics Lab in Penn’s School of Engineering and Applied Science, along with researchers from the New York Blood Center and the Wistar Institute.

Discher’s research was published online in the journal Proceedings of the National Academy of Sciences.

In stark contrast with much of the architecture people interact with every day, the internal architecture of the human body is predominantly soft. Other than bones, all of the organs, tissues and structures in the body are pliable and flexible and need to be that way in order to work.

The Discher lab’s research aims to understand what keeps these flexible structures stable, especially when they are under constant physical stress. Discher selected red blood cells as a model for this stress, as they make a complete lap of the turbulent circulatory system every few minutes but survive for months.

“Red blood cells are disks, and they have proteins right below the membrane that give it resilience, like a car tire,” Discher said. “The cells are filled with hemoglobin like the tires are filled with air, but where the rubber meets the road is the exterior.”

To measure stress in that membrane on an atomic level, the Discher team needed a way to track changes to the shape of those supporting proteins. They found an ideal proxy for that stress in the amino acid cysteine.

Proteins are long chain of amino acids that are tightly folded in on themselves. The order and chemical properties of the acids determine the locations of the folds, which in turn determine the function of the protein. Cysteine is “hydrophobic”; it interacts poorly with water and so it is usually on the inside of a protein. And because stress changes the shape of these folded proteins, Discher reasoned that measuring the degree to which cysteine is exposed would in effect measure how stressed the protein and cells containing it are.

Discher’s team simulated the shear forces originating from the beating heart, which forcefully pumps blood and ultimately pulls apart the folds that keep cysteine on the inside of proteins at the red blood cell membrane, allowing it to bind with a fluorescent marker dye. The team could visually confirm that more stressed cells were more fluorescent under the microscope but actually tested the levels of marked cysteine using mass spectrometry.

“Just like a polymer engineer designing a tire, we’re looking at the relationship between the chemical makeup and the physical stability of the structure and how it performs,” Discher said. “We can use this technique to look at the relationship between structure, flexibility and function.”

Investigating the structural elements of blood cells could pave the way to breakthroughs for human health.

“How long can blood be stored? Why are there no good blood substitutes? There are a lot of things we don’t understand about the forces cells can sustain before fragmenting and falling apart, especially when we consider age and mutations,” he said.

The Discher team studied the mutated blood cells that result in disorders known as elliptocytosis; cells are elliptical, rather than round, and therefore have shorter functional lifespans. These elliptical cells are often missing a chemical “rivet” that anchors the support proteins to the outer membrane, which means that stress causes them to “disassociate,” or disconnect, rather than unfold.

That kind of structural change is crippling to the function of anatomical structures like blood cells. The flexibility provided by unfolding is therefore key to their overall stability.

“At least for this cell, the first mechanism of response is to unfold proteins and keep the interactions between proteins the same,” Discher said. “That constant back and forth with unfolding within these cells as the cells flow and distort while in the blood stream, allows their architecture to be maintained.”

Discher and his colleagues plan to use their cysteine-mass-spectometry technique to investigate the role of softness and flexibility in responding to stress in other biological systems, particularly stem cells, and to better understand why those traits are intrinsic to life on this planet.

Along with Discher and Krieger, the research was conducted by Xiuli An and Narla Mohandas of the New York Blood Center and Hsin-Yao Tang and David W. Speicher of the Wistar Institute.

The research was supported by the National Institutes of Health.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>