Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogenic bacteria hitchhiking to North and Baltic Seas?

22.07.2016

For the first time, AWI scientists have found evidence of living, potentially pathogenic vibrions on microplastic particles.

With increasing water temperatures comes an increasing likelihood of potentially pathogenic bacteria appearing in the North and Baltic Seas. AWI scientists have now proven that a group of such bacteria known as vibrios can survive on microplastic particles. In the future, they want to investigate in greater detail the role of these particles on the accumulation and possible distribution of these bacteria.


Several Vibrio species are evident in this sample of North Sea water

Photo: Alfred-Wegener-Institut / A. Wichels

Summer heatwaves could result in the strong proliferation of pathogenic bacteria in North and Baltic Seas. In recent years, this also included bacteria of the genus Vibrio which can cause diarrhoeal diseases or severe inflammations. “Vibrios are climate change winners, because their numbers soar at higher temperatures,” Dr. Gunnar Gerdts, microbiologist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) on Heligoland explains.

In moderate summers, the bacteria are only sporadically evident in sea water, but can proliferate explosively during heat waves if water temperatures rise above 22 degree Celsius. Especially in nearshore areas of the Baltic Sea, such heatwaves have in the past repeatedly been associated with cases of disease or death caused by the bacterium Vibrio vulnificus.

Gerdts and his team have taken samples from the sea and examined whether the bacteria benefit from a new habitat known as the plastisphere. Bacteria, fungi and microalgae growing in a mucous layer live in biofilms on the surface of plastic particles. They are known, for example, as the basis for growth on ships’ hulls. The composition of these biofilms varies depending on the condition of the surface and the living organisms in the surrounding water. Gene sequencing suggested that Vibrios may also be part of this ecosystem.

For the first time now, the Heligoland microbiologists have succeeded in proving the existence of living, potentially human-pathogenic Vibrio species in biofilms on microplastic particles. “This illustrates the potential of pathogens hitchhiking on these particles, i.e. disseminating as free loaders within an ecosystem and proliferating beyond,” Gunnar Gerdts classifies the latest research findings.

For their study, now published online in the “Marine Environmental Research” professional journal, the AWI scientists on the research vessel Heincke had taken samples from 62 sampling stations in the North and Baltic Seas. In addition, they used a Neuston catamaran (photo) to skim off microplastic particles directly below the water’s surface for further investigation in the laboratory. In total, the scientists collected 185 particles. On 19 of these particles, they found evidence of Vibrios that were mostly also found in water samples from the same sampling stations.

The good news: As part of their investigations, the Heligoland AWI scientists did not encounter any pathogenic genotypes. Microbiologist Gunnar Gerdts is also in communication with the authorities on this topic. “At the North and Baltic Sea coasts, regional investigation offices already spot check water samples for Vibrio species. It would be a cause for concern if microplastic particles ‘charged’ with Vibrios became a regular occurrence in the future, as biofilms generally have a higher bacterial density than open water,” the AWI scientist reports.

By the way, the test method used in the study does not permit any conclusions as to whether Vibrios accumulate on these plastic particles. With the culture medium used, the scientists were only able to show whether or not Vibrios live in the water or on the microplastic particles. “For that reason, it is our aim for the future also to determine the number of Vibrios on the plastic particles using the quantitative polymerase chain reaction which will then also permit quantitative comparisons,” Gunnar Gerdts specifies the next research objectives.

Background:
In addition to several species of Vibrios, a distinction is also made between various genotypes of different pathogenic potential. The genotypes evident in the study did not have the virulence genes as for example found in pandemic genotypes, such as Vibrio cholerae El-Tor, a cholera-inducing pathogen. However, even such not specifically virulent Vibrios can cause serious diseases, if there is any prior damage to the infected person’s state of health (e.g. by diabetes).

Original publication
Inga V. Kirstein, Sidika Kirmizi, Antje Wichels, Alexa Garin-Fernandez, Rene Erler, Martin Löder, Gunnar Gerdts: Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research (Volume 120, September 2016, Pages 1–8); http://dx.doi.org/10.1016/j.marenvres.2016.07.004

Notes for Editors

Your contact persons are
• Dr Gunnar Gerdts, tel. +49(4725)819-3245 (e-mail: Gunnar.Gerdts(at)awi.de)
• Dr Folke Mehrtens, Communications Dept., tel. +49(471)4831-2007 (e-mail: Folke.Mehrtens(at)awi.de

Please find printable images on: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>