Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogenic bacteria hitchhiking to North and Baltic Seas?

22.07.2016

For the first time, AWI scientists have found evidence of living, potentially pathogenic vibrions on microplastic particles.

With increasing water temperatures comes an increasing likelihood of potentially pathogenic bacteria appearing in the North and Baltic Seas. AWI scientists have now proven that a group of such bacteria known as vibrios can survive on microplastic particles. In the future, they want to investigate in greater detail the role of these particles on the accumulation and possible distribution of these bacteria.


Several Vibrio species are evident in this sample of North Sea water

Photo: Alfred-Wegener-Institut / A. Wichels

Summer heatwaves could result in the strong proliferation of pathogenic bacteria in North and Baltic Seas. In recent years, this also included bacteria of the genus Vibrio which can cause diarrhoeal diseases or severe inflammations. “Vibrios are climate change winners, because their numbers soar at higher temperatures,” Dr. Gunnar Gerdts, microbiologist at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) on Heligoland explains.

In moderate summers, the bacteria are only sporadically evident in sea water, but can proliferate explosively during heat waves if water temperatures rise above 22 degree Celsius. Especially in nearshore areas of the Baltic Sea, such heatwaves have in the past repeatedly been associated with cases of disease or death caused by the bacterium Vibrio vulnificus.

Gerdts and his team have taken samples from the sea and examined whether the bacteria benefit from a new habitat known as the plastisphere. Bacteria, fungi and microalgae growing in a mucous layer live in biofilms on the surface of plastic particles. They are known, for example, as the basis for growth on ships’ hulls. The composition of these biofilms varies depending on the condition of the surface and the living organisms in the surrounding water. Gene sequencing suggested that Vibrios may also be part of this ecosystem.

For the first time now, the Heligoland microbiologists have succeeded in proving the existence of living, potentially human-pathogenic Vibrio species in biofilms on microplastic particles. “This illustrates the potential of pathogens hitchhiking on these particles, i.e. disseminating as free loaders within an ecosystem and proliferating beyond,” Gunnar Gerdts classifies the latest research findings.

For their study, now published online in the “Marine Environmental Research” professional journal, the AWI scientists on the research vessel Heincke had taken samples from 62 sampling stations in the North and Baltic Seas. In addition, they used a Neuston catamaran (photo) to skim off microplastic particles directly below the water’s surface for further investigation in the laboratory. In total, the scientists collected 185 particles. On 19 of these particles, they found evidence of Vibrios that were mostly also found in water samples from the same sampling stations.

The good news: As part of their investigations, the Heligoland AWI scientists did not encounter any pathogenic genotypes. Microbiologist Gunnar Gerdts is also in communication with the authorities on this topic. “At the North and Baltic Sea coasts, regional investigation offices already spot check water samples for Vibrio species. It would be a cause for concern if microplastic particles ‘charged’ with Vibrios became a regular occurrence in the future, as biofilms generally have a higher bacterial density than open water,” the AWI scientist reports.

By the way, the test method used in the study does not permit any conclusions as to whether Vibrios accumulate on these plastic particles. With the culture medium used, the scientists were only able to show whether or not Vibrios live in the water or on the microplastic particles. “For that reason, it is our aim for the future also to determine the number of Vibrios on the plastic particles using the quantitative polymerase chain reaction which will then also permit quantitative comparisons,” Gunnar Gerdts specifies the next research objectives.

Background:
In addition to several species of Vibrios, a distinction is also made between various genotypes of different pathogenic potential. The genotypes evident in the study did not have the virulence genes as for example found in pandemic genotypes, such as Vibrio cholerae El-Tor, a cholera-inducing pathogen. However, even such not specifically virulent Vibrios can cause serious diseases, if there is any prior damage to the infected person’s state of health (e.g. by diabetes).

Original publication
Inga V. Kirstein, Sidika Kirmizi, Antje Wichels, Alexa Garin-Fernandez, Rene Erler, Martin Löder, Gunnar Gerdts: Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Marine Environmental Research (Volume 120, September 2016, Pages 1–8); http://dx.doi.org/10.1016/j.marenvres.2016.07.004

Notes for Editors

Your contact persons are
• Dr Gunnar Gerdts, tel. +49(4725)819-3245 (e-mail: Gunnar.Gerdts(at)awi.de)
• Dr Folke Mehrtens, Communications Dept., tel. +49(471)4831-2007 (e-mail: Folke.Mehrtens(at)awi.de

Please find printable images on: http://www.awi.de/nc/en/about-us/service/press.html

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>