Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogen strains competing for the same host plant change disease dynamics

08.01.2015

The epidemics caused by coinfection of several pathogen strains in a plant population is more severe than epidemics caused by single strains.

A plant individual may be simultaneously infected by several pathogen strains, each aiming for optimal survival and reproduction. This competition may come at the cost of the well being of the host as higher host exploitation rates may increase host mortality.

However, killing the host should not be in the interest of the pathogen that requires living host tissue for survival.

Academy Research Fellow Anna-Liisa Laine working at the University of Helsinki has an explanation for this puzzling phenomenon. "Rapid host exploitation rates may be favored under coinfection where the strains are competing for the same limited resources. Strains that are playing fair lose to those most quickly exhaust the host," she says.

Anna-Liisa Laine and her research group have been studying the interaction between host plant ribwort plantain, Plantago lanceolata, and its powdery mildew pathogen across hundreds of populations. They've discovered that coinfection by several strains of the same host plant are common in the wild with more than half of the pathogen populations supporting coinfection.

Experimental work coupled with field surveys of infection show that those host populations supporting coinfection suffer more severe epidemics than those where a single pathogen strain is present. A spore trapping experiment confirmed that the change in epidemiological dynamics is explained by higher spore production rate under coinfection.

These results confirm classic predictions of how infection dynamics can fundamentally change under coinfection. The study also highlights how important it is to account for coinfection - which can be spatially and temporally variable - when designing disease prevention efforts.

"Here we find that coinfection by different strains of the same pathogen species completely change infection dynamics. These results are really just scraping the surface of how complex infection dynamics can be under coinfection. In our current work we've discovered that ribwort plantain populations in Finland contain hundreds of viruses. We're now measuring how this within host disease community affects infection dynamics for a wide range of pathogen species," says Anna-Liisa Laine.

Anna-Liisa Laine | EurekAlert!
Further information:
http://www.helsinki.fi/university/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>