Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Pathogen strains competing for the same host plant change disease dynamics


The epidemics caused by coinfection of several pathogen strains in a plant population is more severe than epidemics caused by single strains.

A plant individual may be simultaneously infected by several pathogen strains, each aiming for optimal survival and reproduction. This competition may come at the cost of the well being of the host as higher host exploitation rates may increase host mortality.

However, killing the host should not be in the interest of the pathogen that requires living host tissue for survival.

Academy Research Fellow Anna-Liisa Laine working at the University of Helsinki has an explanation for this puzzling phenomenon. "Rapid host exploitation rates may be favored under coinfection where the strains are competing for the same limited resources. Strains that are playing fair lose to those most quickly exhaust the host," she says.

Anna-Liisa Laine and her research group have been studying the interaction between host plant ribwort plantain, Plantago lanceolata, and its powdery mildew pathogen across hundreds of populations. They've discovered that coinfection by several strains of the same host plant are common in the wild with more than half of the pathogen populations supporting coinfection.

Experimental work coupled with field surveys of infection show that those host populations supporting coinfection suffer more severe epidemics than those where a single pathogen strain is present. A spore trapping experiment confirmed that the change in epidemiological dynamics is explained by higher spore production rate under coinfection.

These results confirm classic predictions of how infection dynamics can fundamentally change under coinfection. The study also highlights how important it is to account for coinfection - which can be spatially and temporally variable - when designing disease prevention efforts.

"Here we find that coinfection by different strains of the same pathogen species completely change infection dynamics. These results are really just scraping the surface of how complex infection dynamics can be under coinfection. In our current work we've discovered that ribwort plantain populations in Finland contain hundreds of viruses. We're now measuring how this within host disease community affects infection dynamics for a wide range of pathogen species," says Anna-Liisa Laine.

Anna-Liisa Laine | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>