Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Parasitic tapeworm influences the behavior and lifespan of uninfected members of ant colonies


Aggressive behavior of entire ant colony reduced / Lifespan of uninfected nest-mates curtailed but increased in infected ants

Ants are quite often infected by parasites. For example, tapeworms use ants as intermediate hosts for a part of their development phase before they complete their life cycle in their main host. Researchers at Johannes Gutenberg University Mainz (JGU) have now discovered that such parasites not only change the appearance and behavior of infected ants but also have an effect on the behavior of uninfected members of the colony.

A healthy brown and an infected yellow ant (at the top) and the Anomotaenia brevis tapeworm in its larval stage as it is found in ants (below)

photo/©: Susanne Foitzik

The overall aggressiveness of an ant colony diminishes if it contains members who are infected with a parasite. The investigations being undertaken by a team of Mainz-based evolutionary biologists headed by Professor Susanne Foitzik are designed to uncover the effects that parasites have on animal societies and to find out how the parasites manipulate the behavior of their hosts in order to better survive. Their findings have recently been published in Proceedings of the Royal Society B.

The Temnothorax nylanderi ant species is native to western Europe and prefers to build its nests in acorns or dead wood on forest floors. The workers are two to three millimeters long and form colonies of 50 to 200 insects.

They serve as an intermediate host for the Anomotaenia brevis tapeworm, which infects the ants during the larval stage and lives in their intestines. Infected ants turn yellow and thus differ noticeably from their predominantly brown colleagues.

They also become inactive and remain in the nest where they barely participate in social activities, such as caring for the brood. So that the tapeworm can complete its life cycle, its host ant must be eaten by the main host, a woodpecker. In the Lennebergwald forest, a wooded area of 700 hectares to the northwest of the city of Mainz, about a third of all ant colonies have the parasite and some 13 percent of the insects are infected.

"The parasites have developed fascinating strategies to protect their interests and so ensure, for example, their proliferation," explained Professor Susanne Foitzik. "They attempt to influence the ants in such a way that they are more likely to be eaten by a woodpecker." There are various methods they employ in the case of Temnothorax nylanderi to achieve their ends.

The study has shown that infected ants live longer than their uninfected nest-mates. "The longer lifespan may be due to modified genetic regulation but could also be the result of the fact that the infected insects enjoy a better level of feeding," points out Sara Beros, primary author of the study. They also exhibit less marked flight behavior in response to simulated woodpecker attacks, an effect that would increase the parasites' chances of being eaten by their definitive host.

"The parasite's long arm" is how the authors of the study describe the effect that enables the tapeworms to manipulate both the infected ants as well as their uninfected nest-mates. One factor is that these nest-mates have a shorter lifespan and not just relative to the infected animals but also relative to the other ants from uninfected colonies. This is probably the result of the additional stress they experience because of the need to care for the infected animals while also having to do without their help when it comes to other social tasks.

A parasitized colony is also far less aggressive towards intruders of the same species. The researchers assume that the reason for this is associated with the chemical profile of the infected insects that emit a different scent. Each colony has its own nest-specific odor that normally serves as a recognition signal for the group members. If the odor is disrupted by the presence of other scents, this has a negative effect on the readiness to defend the colony against intruders.

Sara Beros et al.
The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host
Proceedings of the Royal Society B, 18 November 2015
DOI: 10.1098/rspb.2015.1473

A healthy brown and an infected yellow Temnothorax nylanderi ant
photo/©: Susanne Foitzik
A yellow ant infected by the Anomotaenia brevis tapeworm
photo/©: Susanne Foitzik
A healthy brown and an infected yellow ant (at the top) and the Anomotaenia brevis tapeworm in its larval stage as it is found in ants (below)
photo/©: Susanne Foitzik

Further information:
Professor Dr. Susanne Foitzik
Department of Evolutionary Biology
Institute of Zoology
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-27840
fax +49 6131 39-27850

Weitere Informationen: - press release "Novel genes determine division of labor in insect societies", 30 January 2014

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>