Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitic flatworms flout global biodiversity patterns

27.07.2015

The odds of being attacked and castrated by a variety of parasitic flatworms increases for marine horn snails the farther they are found from the tropics. A Smithsonian-led research team discovered this exception to an otherwise globally observed pattern--usually biodiversity is greatest in the tropics and decreases toward the poles.

The study, published in Ecology, makes a case for using host-parasite relationships as a tool to understand why there are typically more species--and more interactions between species--in the tropics than anywhere else in the world.


A trematode worm bites and sucks out the insides of an enemy species, with the eyespots of the victim's offspring still visible inside the attacker's gut. At least 20 species of trematode compete to parasitize and castrate marine horn snails (Cerithideopsis species), and such predatory interactions are more frequent in the temperate zone than the tropics.

Credit: Ryan Hechinger

"Unlike free-living species, parasites must use hosts as their habitats," said co-author Osamu Miura, former postdoc at the Smithsonian Tropical Research Institute in Panama and associate professor at Kochi University in Japan. "Wide-ranging hosts provide a nearly constant habitat for the parasites, regardless of latitude."

Such host-parasite systems are thus particularly useful for testing hypotheses about global biodiversity trends. Generations of scientists have tried to explain why biodiversity decreases from the tropics to the poles--a pattern known as the latitudinal diversity gradient. Suggested hypotheses include greater seasonal stability, more complex food webs, faster speciation rates and lower extinction rates in the tropics relative to higher latitudes. Because many of these variables influence each other, it is hard to test the effects of one factor independent of the rest.

"The cool thing about horn snails and their parasites is that we can actually test hypotheses about biodiversity," said lead researcher Mark Torchin, a staff scientist at the Smithsonian Tropical Research Institute. He explains that even across a widely variable geographic range--along the Pacific and Atlantic coasts from Central America to the subtropical United States--the horn snails serve as natural, standardized habitats for measuring parasite diversity. "It lets us do a real, apples-to-apples comparison when the habitat--the snails--is the same across this broad geographic region."

The Pacific horn snail (Cerithideopsis californica) and Atlantic horn snail (C. pliculosa) are two closely related species widespread in estuaries along the coasts from the tropics to the temperate zone. At least 20 species of trematode--a kind of flatworm--compete to parasitize and castrate the snails. The trematodes produce offspring that leave the snails and eventually infect migratory sea birds. So although the snails are restricted to their local habitat, the trematodes themselves are spread across vast distances by the birds.

Co-author Ryan Hechinger, professor at the University of California, San Diego's Scripps Institution of Oceanography, explains that the parasites' unusual life history allows the research team to simplify the question of how the latitudinal diversity gradient arose. Because the trematodes spread so quickly up and down the coast, they could rule out speciation rates as a factor affecting their pattern of distribution.

"So, if greater speciation rates cause the normal diversity gradient--decreasing from the temperate zone to the tropics--and if we preclude that from being a factor, we shouldn't see the usual pattern for these trematodes," Hechinger said. "That's exactly what we see in our study, suggesting that speciation does play a role in creating the normal latitudinal diversity gradient."

The research team collected snails and parasites from 43 field sites spread across five countries and 27 degrees of latitude in the Pacific and Atlantic Ocean, and found that parasite prevalence, diversity and competition rates all increased with higher latitude in a reversed diversity gradient. The reversed pattern suggests that local ecological factors also have a part to play in shaping biodiversity. In the tropics, environmental instability--such as from hurricanes or storm runoff--and greater snail death rates might decrease the available pool of snails for trematodes to parasitize. Conversely, greater stability and larger snail populations in the temperate zone sustain higher trematode species diversity over time.

The co-authors note that there are advantages to paying attention to parasites, which are generally overlooked despite being found everywhere. Apart from some research on humans, for example, there are few comprehensive studies looking at how parasite diversity changes in a single, wide-ranging species across latitude. Since the latitudinal diversity gradient generally holds true across the world, it remains important to understand how and why this pattern exists. "We now have a plan to conduct similar research in Asia to test the robustness of our findings on the other side of the world," said Miura.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Reference: Torchin, M.E., Miura O., and Hechinger, R.F. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts. Ecology. DOI:10.1890/15-0518.1

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>