Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitic flatworms flout global biodiversity patterns

27.07.2015

The odds of being attacked and castrated by a variety of parasitic flatworms increases for marine horn snails the farther they are found from the tropics. A Smithsonian-led research team discovered this exception to an otherwise globally observed pattern--usually biodiversity is greatest in the tropics and decreases toward the poles.

The study, published in Ecology, makes a case for using host-parasite relationships as a tool to understand why there are typically more species--and more interactions between species--in the tropics than anywhere else in the world.


A trematode worm bites and sucks out the insides of an enemy species, with the eyespots of the victim's offspring still visible inside the attacker's gut. At least 20 species of trematode compete to parasitize and castrate marine horn snails (Cerithideopsis species), and such predatory interactions are more frequent in the temperate zone than the tropics.

Credit: Ryan Hechinger

"Unlike free-living species, parasites must use hosts as their habitats," said co-author Osamu Miura, former postdoc at the Smithsonian Tropical Research Institute in Panama and associate professor at Kochi University in Japan. "Wide-ranging hosts provide a nearly constant habitat for the parasites, regardless of latitude."

Such host-parasite systems are thus particularly useful for testing hypotheses about global biodiversity trends. Generations of scientists have tried to explain why biodiversity decreases from the tropics to the poles--a pattern known as the latitudinal diversity gradient. Suggested hypotheses include greater seasonal stability, more complex food webs, faster speciation rates and lower extinction rates in the tropics relative to higher latitudes. Because many of these variables influence each other, it is hard to test the effects of one factor independent of the rest.

"The cool thing about horn snails and their parasites is that we can actually test hypotheses about biodiversity," said lead researcher Mark Torchin, a staff scientist at the Smithsonian Tropical Research Institute. He explains that even across a widely variable geographic range--along the Pacific and Atlantic coasts from Central America to the subtropical United States--the horn snails serve as natural, standardized habitats for measuring parasite diversity. "It lets us do a real, apples-to-apples comparison when the habitat--the snails--is the same across this broad geographic region."

The Pacific horn snail (Cerithideopsis californica) and Atlantic horn snail (C. pliculosa) are two closely related species widespread in estuaries along the coasts from the tropics to the temperate zone. At least 20 species of trematode--a kind of flatworm--compete to parasitize and castrate the snails. The trematodes produce offspring that leave the snails and eventually infect migratory sea birds. So although the snails are restricted to their local habitat, the trematodes themselves are spread across vast distances by the birds.

Co-author Ryan Hechinger, professor at the University of California, San Diego's Scripps Institution of Oceanography, explains that the parasites' unusual life history allows the research team to simplify the question of how the latitudinal diversity gradient arose. Because the trematodes spread so quickly up and down the coast, they could rule out speciation rates as a factor affecting their pattern of distribution.

"So, if greater speciation rates cause the normal diversity gradient--decreasing from the temperate zone to the tropics--and if we preclude that from being a factor, we shouldn't see the usual pattern for these trematodes," Hechinger said. "That's exactly what we see in our study, suggesting that speciation does play a role in creating the normal latitudinal diversity gradient."

The research team collected snails and parasites from 43 field sites spread across five countries and 27 degrees of latitude in the Pacific and Atlantic Ocean, and found that parasite prevalence, diversity and competition rates all increased with higher latitude in a reversed diversity gradient. The reversed pattern suggests that local ecological factors also have a part to play in shaping biodiversity. In the tropics, environmental instability--such as from hurricanes or storm runoff--and greater snail death rates might decrease the available pool of snails for trematodes to parasitize. Conversely, greater stability and larger snail populations in the temperate zone sustain higher trematode species diversity over time.

The co-authors note that there are advantages to paying attention to parasites, which are generally overlooked despite being found everywhere. Apart from some research on humans, for example, there are few comprehensive studies looking at how parasite diversity changes in a single, wide-ranging species across latitude. Since the latitudinal diversity gradient generally holds true across the world, it remains important to understand how and why this pattern exists. "We now have a plan to conduct similar research in Asia to test the robustness of our findings on the other side of the world," said Miura.

The Smithsonian Tropical Research Institute, headquartered in Panama City, Panama, is a unit of the Smithsonian Institution. The Institute furthers the understanding of tropical nature and its importance to human welfare, trains students to conduct research in the tropics and promotes conservation by increasing public awareness of the beauty and importance of tropical ecosystems. Website: http://www.stri.si.edu.

Reference: Torchin, M.E., Miura O., and Hechinger, R.F. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts. Ecology. DOI:10.1890/15-0518.1

Media Contact

Beth King
kingb@si.edu
202-633-4700 x28216

 @stri_panama

http://www.stri.org 

Beth King | EurekAlert!

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>