Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel computation provides deeper insight into brain function

27.03.2017

New computational software developed by OIST researchers is hundreds of times faster than conventional tools, opening up new opportunities to understand how individual neurons and networks of neurons function

Unlike experimental neuroscientists who deal with real-life neurons, computational neuroscientists use model simulations to investigate how the brain functions. While many computational neuroscientists use simplified mathematical models of neurons, researchers in the Computational Neuroscience Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) develop software that models neurons to the detail of molecular interactions with the goal of eliciting new insights into neuronal function.


By breaking the partial Purkinje cell model (A) down into 50 sections (B-top) or 1000 sections (B-bottom) and running computations of each section in parallel on a supercomputer, OIST researchers dramatically reduced the simulation time of the model.

Credit: OIST

Applications of the software were limited in scope up until now because of the intense computational power required for such detailed neuronal models, but recently Dr. Weiliang Chen, Dr. Iain Hepburn, and Professor Erik De Schutter published two related papers in which they outline the accuracy and scalability of their new high-speed computational software, "Parallel STEPS". The combined findings suggest that Parallel STEPS could be used to reveal new insights into how individual neurons function and communicate with each other.

The first paper, published in The Journal of Chemical Physics in August 2016, focusses on ensuring that the accuracy of Parallel STEPS is comparable with conventional methods. In conventional approaches, computations associate with neuronal chemical reactions and molecule diffusion are all calculated on one computational processing unit or 'core' sequentially.

However, Dr. Iain Hepburn and colleagues introduced a new approach to perform computations of reaction and diffusion in parallel which can then be distributed over multiple computer cores, whilst maintaining simulation accuracy to a high degree. The key was to develop an original algorithm separated into two parts - one that computed chemical reaction events and the other diffusion events.

"We tested a range of model simulations from simple diffusion models to realistic biological models and found that we could achieve improved performance using a parallel approach with minimal loss of accuracy. This demonstrated the potential suitability of the method on a larger scale," says Dr. Hepburn.

In a related paper published in Frontiers in Neuroinformatics this February, Dr. Weiliang Chen presented the implementation details of Parallel STEPS and investigated its performance and potential applications. By breaking a partial model of a Purkinje cell - one of the largest neurons in the brain - into 50 to 1000 sections and simulating reaction and diffusion events for each section in parallel on the Sango supercomputer at OIST, Dr. Chen and colleagues saw dramatically increased computation speeds. They tested this approach on both simple models and more complicated models of calcium bursts in Purkinje cells and demonstrated that parallel simulation could speed up computations by more than several hundred times that of conventional methods.

"Together, our findings show that Parallel STEPS implementation achieves significant improvements in performance, and good scalability," says Dr. Chen. "Similar models that previously required months of simulation can now be completed within hours or minutes, meaning that we can develop and simulate more complex models, and learn more about the brain in a shorter amount of time."

Dr. Hepburn and Dr. Chen from OIST's Computational Neuroscience Unit, led by Professor Erik De Schutter, are actively collaborating with the Human Brain Project, a world-wide initiative based at École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, to develop a more robust version of Parallel STEPS that incorporates electric field simulation of cell membranes.

So far STEPS is only realistically capable of modeling parts of neurons but with the support of Parallel STEPS, the Computational Neuroscience Unit hopes to develop a full-scale model of a whole neuron and subsequently the interactions between neurons in a network. By collaborating with the EPFL team and by making use of the IBM 'Blue Gene/Q' supercomputer located there, they aim to achieve these goals in the near future.

"Thanks to modern supercomputers we can study molecular events within neurons in a much more transparent way than before," says Prof. De Schutter. "Our research opens up interesting avenues in computational neuroscience that links biochemistry with electrophysiology for the first time."

Media Contact

Kaoru Natori
kaoru.natori@oist.jp
899-896-62389

 @oistedu

http://www.oist.jp/ 

Kaoru Natori | EurekAlert!

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>