Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paleo study shows how elevation may affect evolution


Paleontologists have documented how dramatic shifts in climate have led to dramatic shifts in evolution.

One such event, the Grande Coupure, was a wipeout of many European mammal species 33.9 million years ago when global temperatures and precipitation declined sharply. What has been puzzling is that during the same transition between the Eocene and Oligocene periods, North American mammals fared much better.

The rise of the Rockies extended from British Columbia to Nevada in three phases between 56 and 23 million years ago. The rising mountains dried out the interior, preparing mammals for a major climate change event 34 million years ago, researchers say. European mammals were not so prepared.

Courtesy of Eronen et. al.

A new study explains why: the rise of the Rocky Mountains, already underway for millions of years, had predisposed populations to adapt to a cold, dry world.

'Regional tectonically driven surface uplift resulted in large-scale reorganization of precipitation patterns, and our data show that the mammalian faunas adapted to these changes,' write the study authors, including Christine Janis, professor of ecology and evolutionary biology at Brown University, in the Proceedings of the Royal Society B. 'We suggest that the late Eocene mammalian faunas of North America were already 'pre-adapted' to the colder and drier global conditions that followed the EO climatic cooling.'

The data in the study led by Jussi Eronen of the Senckenberg Research Institutes in Germany and the University of Helsinki in Finland, come from the authors' analysis of the fossil record of the two continents, combined with previous oxygen isotope data that reveal precipitation patterns, and tectonic models that show the growth of the Rocky Mountains. Specifically, the study shows that the rise of the range spread south in three phases from Canada starting more than 50 million years ago, down through Idaho, and finally into Nevada by 23 million years ago.

In the meantime, fossil mammal data show, precipitation in the interior regions dropped, and major shifts in mammal populations, such as an almost complete loss of primates, took place. Estimated rainfall based on plant fossils in Wyoming, for example, dropped from about 1,200 millimeters a year 56 million years ago to only 750 millimeters a year about 49 million years ago.

But across the region these correlated shifts occurred over tens of millions of years, leaving a well-adapted mix of mammals behind by the time of the Grand Coupure 34 million years ago.

In Europe, meanwhile, tectonic developments weren't a major factor driving local climate. When the global climate change happened, that continent's mammals were evolutionary sitting ducks. Other studies have already suggested that Europe's mammals were largely overrun and outcompeted by Asian mammals that were already living in colder and drier conditions.

Eronen said the findings should elevate the importance of collaboration across disciplines, for instance by integrating geoscience with paleontology, in the analysis of broad evolutionary patterns.

'Our results highlight the importance of regional tectonic and surface uplift processes on the evolution of mammalian faunas,' they wrote.


In addition to Eronen and Janis, the paper's other authors are C. Page Chamberlain of Stanford University and Andreas Mulch of the Senckenberg Institutes and Goethe University in Germany.

David Orenstein | EurekAlert!

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>