Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paleo study shows how elevation may affect evolution

03.06.2015

Paleontologists have documented how dramatic shifts in climate have led to dramatic shifts in evolution.

One such event, the Grande Coupure, was a wipeout of many European mammal species 33.9 million years ago when global temperatures and precipitation declined sharply. What has been puzzling is that during the same transition between the Eocene and Oligocene periods, North American mammals fared much better.


The rise of the Rockies extended from British Columbia to Nevada in three phases between 56 and 23 million years ago. The rising mountains dried out the interior, preparing mammals for a major climate change event 34 million years ago, researchers say. European mammals were not so prepared.

Courtesy of Eronen et. al.

A new study explains why: the rise of the Rocky Mountains, already underway for millions of years, had predisposed populations to adapt to a cold, dry world.

'Regional tectonically driven surface uplift resulted in large-scale reorganization of precipitation patterns, and our data show that the mammalian faunas adapted to these changes,' write the study authors, including Christine Janis, professor of ecology and evolutionary biology at Brown University, in the Proceedings of the Royal Society B. 'We suggest that the late Eocene mammalian faunas of North America were already 'pre-adapted' to the colder and drier global conditions that followed the EO climatic cooling.'

The data in the study led by Jussi Eronen of the Senckenberg Research Institutes in Germany and the University of Helsinki in Finland, come from the authors' analysis of the fossil record of the two continents, combined with previous oxygen isotope data that reveal precipitation patterns, and tectonic models that show the growth of the Rocky Mountains. Specifically, the study shows that the rise of the range spread south in three phases from Canada starting more than 50 million years ago, down through Idaho, and finally into Nevada by 23 million years ago.

In the meantime, fossil mammal data show, precipitation in the interior regions dropped, and major shifts in mammal populations, such as an almost complete loss of primates, took place. Estimated rainfall based on plant fossils in Wyoming, for example, dropped from about 1,200 millimeters a year 56 million years ago to only 750 millimeters a year about 49 million years ago.

But across the region these correlated shifts occurred over tens of millions of years, leaving a well-adapted mix of mammals behind by the time of the Grand Coupure 34 million years ago.

In Europe, meanwhile, tectonic developments weren't a major factor driving local climate. When the global climate change happened, that continent's mammals were evolutionary sitting ducks. Other studies have already suggested that Europe's mammals were largely overrun and outcompeted by Asian mammals that were already living in colder and drier conditions.

Eronen said the findings should elevate the importance of collaboration across disciplines, for instance by integrating geoscience with paleontology, in the analysis of broad evolutionary patterns.

'Our results highlight the importance of regional tectonic and surface uplift processes on the evolution of mammalian faunas,' they wrote.

###

In addition to Eronen and Janis, the paper's other authors are C. Page Chamberlain of Stanford University and Andreas Mulch of the Senckenberg Institutes and Goethe University in Germany.

David Orenstein | EurekAlert!

More articles from Life Sciences:

nachricht Clock stars: Astrocytes keep time for brain, behavior
27.03.2017 | Washington University in St. Louis

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>