Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint by numbers: Algorithm reconstructs processes from individual images

07.09.2017

Researchers at the Helmholtz Zentrum München have developed a new method for reconstructing continuous biological processes, such as disease progression, using image data. The study was published in ‘Nature Communications’.

Modern life sciences generate a constantly growing amount of data in shorter and shorter cycles. Making such data controllable and suitable for evaluation is the objective of Dr. Dr. Alexander Wolf and his colleagues at the Helmholtz Zentrum München’s Institute of Computational Biology (ICB). With this in mind, the researchers are attempting to develop software that handles this evaluation. But of course there are various hurdles to clear.


The new method is able to reconstruct biological processes using image data.

Source: Helmholtz Zentrum München

“In the current study, we dealt with the problem that software cannot assign image data to continuous processes,” explains study leader Wolf. “For example, it is possible to classify image information according to clearly defined categories, but in disease progression and developmental biology, the limits are quickly reached because the processes are continuous and not individual steps.”

In order to take this into account, the Helmholtz team employed methods from so-called Deep Learning* (i.e. machine learning processes). “Using artificial neural networks, we can now combine individual pictures into processes and additionally display them in a way that humans understand,” say Philipp Eulenberg and Niklas Köhler, former Master’s students at the ICB and the study’s first authors.

Blood cells and retinas as sparring partners

In order to demonstrate the method’s capability, the scientists selected two examples. In the first approach, the software reconstructed the continuous cell cycle of white blood cells using images from an imaging flow cytometer (producing pictures in a fluorescence microscope). “A further advantage of this examination is that our software is so fast that it is possible to extract the cell development on the fly, meaning while the analysis in the cytometer is still running,” explains Wolf. “In addition, our software makes six times less errors than previous approaches.”

In the second experiment, the researchers reconstructed the progress of diabetic retinopathy.** “We did this by feeding our software 30,000 individual images of retinas as sparring partners, so to speak,” explains Niklas Köhler. “Since it automatically compiles these data into a continuous process, the software allows us to predict the disease progression on a continuous scale.”

And if the data are not part of a continuous biological process? “In such a case, the software recognizes that individual categories are involved and assigns the measured data to individual clusters,” Wolf explains. In addition to further applications for the method, in the future Wolf and his colleagues want to solve other problems involving the evaluation of biological data using machine learning.


Further Information

* Deep Learning algorithms simulate the learning processes in people using artificial neural networks. The principle functions particularly well when large quantities of data (Big Data) are available for training. Image recognition is one of Deep Learning's strengths. More decision layers are placed between the input and the output than usually found in neuronal networks, which is why the term "deep" is used.

** Diabetic retinopathy is the main cause of early vision loss in the Western world. The diagnosis is usually made by an expert, who assigns it to one of the four stages healthy, mild, medium and severe. Working with 8,000 images, the software was able to describe the progression or increasing severity of the disease without being provided with the ordering information.

Background:
Alex Wolf and the team recently took one of the top places in the Data Science Bowl, one of the world’s highest endowed competitions in Big Data. For their entry, the team programmed an algorithm that recognizes lung cancer on the basis of 300 slices from a three-dimensional computer tomography scan in less than a few milliseconds, a process that can take a radiologist several hours in the worst case.

The ICB also deals with the subject of Deep Learning in other contents: The scientists recently introduced an algorithm in ‘Nature Methods’ that predicts hematopoietic stem cell development. https://www.helmholtz-muenchen.de/en/press-media/press-releases/all-press-releas... In the video “Deep Learning Predicts Stem Cell Development”, they explain how this works. https://www.youtube.com/watch?v=nZ46-fi8OF4&feature=youtu.be

Original Publication:
Eulenberg, P. et al. (2017): Reconstructing cell cycle and disease progression using deep learning. Nature Communications, DOI: 10.1038/s41467-017-00623-3
https://www.nature.com/articles/s41467-017-00623-3

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

The Institute of Computational Biology (ICB) develops and applies methods for the model-based description of biological systems, using a data-driven approach by integrating information on multiple scales ranging from single-cell time series to large-scale omics. Given the fast technological advances in molecular biology, the aim is to provide and collaboratively apply innovative tools with experimental groups in order to jointly advance the understanding and treatment of common human diseases. http://www.helmholtz-muenchen.de/icb

Contact for the media:
Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact:
Dr. Dr. Alexander Wolf, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4217, E-mail: alex.wolf@helmholtz-muenchen.de

Sonja Opitz | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>