Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Out of the Ocean – How algae convert sea water into chalk shells


An international research team headed by André Scheffel from the Max Planck Institute of Molecular Plant Physiology and by scientists from the Biomaterials department of the Max Planck Institute of Colloids and Interfaces analyzed the chalk production in a group of marine algae known as coccolithophores. These algae have a strong influence on our climate and their fossilized chalk products give information about past environmental conditions. The researchers found a so far unknown cellular component, which appears to be the main calcium hub in the cells and to influence the incorporation of environmental traces into the chalk. Their research is published in the journal Nature Communications

Algae are true all-rounders. In East-Asian countries they are a staple food. But this is not all they have to offer. They are fascinating and highly adaptable organisms, living almost everywhere there is water – in the ocean, in lakes, or even in puddles and in the snow. With ca. 40.000 known species, algae play an essential role in the environment and for humanity.

Emiliana huxleyi and other marine algae resides within chalk shells called coccoliths. Fossil coccoliths open a window to the climate in the past while contemporary coccoliths influences our climate.

André Scheffel, MPI-MP

The marine microalga Emiliania huxleyi is one of the key phytoplankton species and lives in a solid house assembled from chalky platelets which scientists refer to as coccoliths. After death of the algae, the chalky shell sinks to the ocean floor and becomes an abundant component of sea-floor carbonates.

Over millions of years these shells have accumulated to form thick sediment layers, with the chalk cliff of the German island of Rügen being a prominent example. Due to the incorporation of trace elements from the waters surrounding the cells into the chalk structures, which are produced inside the cells, the chemical composition of these sediments can give information about the climate and environment of the past.

Nevertheless, the mechanism of chalk production in calcareous algae (“coccolithophores”) is poorly understood so far. An international research team led by André Scheffel from the MPIMP and Damien Faivre from the MPICI in Potsdam-Golm has now analyzed the processes of chalk production in the dominant marine alga Emiliana huxleyi.

This unicellular alga produces one chalk disk after the other inside the cell and moves them outside upon completion. In this way the outer shell is produced. The production of each chalk scale takes place inside a membrane-bound compartment, called the coccolith vesicle.

Based on microscopic and spectroscopic techniques the team was able to identify an additional, to date undiscovered calcium reservoir, which feeds coccolith formation with calcium and presumably the impurities that have been detected in mature coccolith chalk. Besides calcium this compartment contains other elements, including polyphosphates, which enable accumulation of calcium without its precipitation.

“The discovery of this new component in the calcium metabolism of the alga Emiliania huxleyi gives new opportunities to understand the production of coccoliths and the integration of trace elements”, explains Sanja Sviben, first author of this study. The insights emerging from this study may bring the coccolith composition and seawater chemistry into a mechanistic framework and help in understanding why and how calcification will be affected by changing environmental conditions.

Beside the reconstruction of past environmental conditions, it will be possible to develop predictive models of the future of calcification and the corresponding impact on climate. “Our results can be used to clarify how ocean acidification can influence the chalk production and how this process can adapt to future conditions”, describes André Scheffel.

Being able to predict those future changes is important, due to the impact coccolithophores have on the global carbon cycle. They bind million tons of carbon dioxide yearly, removing the greenhouse gas from the atmosphere. Each chalky coccolith that ends up on the sea-floor removes carbon from the atmosphere-ocean cycle for thousands of years.

The acidification of the oceans due to raising atmospheric carbon dioxide concentrations poses a threat to biological chalk formation and the consequences of this on our climate are poorly understood.

Dr. André Scheffel
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8358

Dr. Ulrike Glaubitz
Public Relations
Max Planck Institute of Molecular Plant Physiology
Tel. 0331/567 8275

Katja Schulze
Public Relations
Max Planck Institute of Colloids and Interfaces
Tel. 0331/567 9203

Original publication
Sviben, S., Gal., A., Hood., M., A., Bertinetti, L., Politi, Y., Bennet, M., Krishnamoorthy, P., Schertel, A., Wirth, R., Sorrentino, A., Pereiso, E., Faivre, D., Scheffel, A.
A vacuole-like compartment concentrates a disordered calcium phase in a key coccolithophorid alga.
Nature Communications, 14. April 2016, doi: 10.1038/ncomms11228

Weitere Informationen:

Dipl. Ing. agr. Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>