Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OU team develops new antibiotic to fight MRSA

19.05.2016

A University of Oklahoma team of chemists has developed a new antibiotic formulation to fight the sometimes deadly staph infection caused by methicillin-resistant S. aureus or MRSA and other antibiotic-resistant infectious bacteria. The new drug to treat MRSA combines traditional Food and Drug Administration-approved antibiotics, such as methicillin, with the polymer BPEI.

Charles Rice, principal investigator and professor in the Department of Chemistry and Biochemistry, OU College of Arts and Sciences, with team members Robert Cichewicz and Daniel Glatzhofer, both OU chemistry professors, has been able to invigorate older drugs from the penicillin family by combining them with BPEI. While this new formulation requires FDA approval, the approach restores efficacy to obsolete antibiotics.


Rice and team have been able to invigorate older drugs from the penicillin family by combining them with BPEI.

Credit: University of Oklahoma

"The use of first-line antibiotics to kill MRSA or other infectious bacteria will improve patient outcomes and lower the economic burden," Rice said. "The discovery in our laboratory has made it possible to create an effective antibiotic that can reduce expensive hospitalization costs."

Leading up to the discovery, Rice was working in his laboratory when he discovered a way to neutralize the MRSA bacteria so that it is no longer resistant to methicillin. This method can be used to neutralize other infectious bacteria.

The takeaway from these experiments is that any number of penicillin-type drugs combined with BPEI or related polymers could create a new first-line drug for treating infectious diseases and change how MRSA and other infectious bacteria are treated.

The Centers for Disease Control considers MRSA a serious threat to human health. MRSA infected 80,500 people in 2011 and nearly one in seven cases resulted in death. When MRSA colonies invade host tissue, they release toxins that cause tissue injury leading to patient morbidity.

Until now, more costly and highly toxic antibiotics of last resort were used to treat MRSA. The new first-line combo drug developed at OU by Rice and his team has the potential to change how patients with MRSA are treated.

Funding for this research was provided by the National Institutes of Health and the University of Oklahoma. The Journal of Antibiotics has published a paper on the OU-developed first-line combo drug to treat deadly infectious bacteria, such as MRSA.

For more information about the development of this new combo drug, please contact Rice at rice@ou.edu. The Rice laboratory is located in the Stephenson Life Sciences Research Center on the OU Research Campus in Norman, Oklahoma.

Media Contact

Jana Smith
jana.smith@ou.edu
405-325-1322

 @ouresearch

http://www.ou.edu 

Jana Smith | EurekAlert!

Further reports about: Biochemistry FDA MRSA MRSA bacteria antibiotic human health infectious bacteria

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>