Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon study suggests some gut microbes may be keystones of health

12.11.2015

Study using zebrafish finds the abundance of bacteria is not the driving force for regulating a balanced and healthy environment

University of Oregon scientists have found that strength in numbers doesn't hold true for microbes in the intestines. A minority population of the right type might hold the key to regulating good health.


A University of Oregon study finds abundance does not dictate the immune response to bacteria in the guts of zebrafish. This graphic depicts immune response (neutrophils, shown in green) to separate bacterial species, and the response when the two bacteria are placed into a germ-free fish gut at the same time.

Courtesy of Annah S. Rolig

The discovery, based on research using zebrafish raised completely germ free, is reported in a paper published in the Nov. 11 issue of Cell Host & Microbe. The findings provide a path to study the function of each bacterial species in the gut and to eventually, perhaps, predict and prevent disease, says lead author Annah S. Rolig, a postdoctoral researcher in the UO's Institute of Molecular Biology.

In the project, researchers watched for immune response as isolates of species of bacteria, normally associated with healthy zebrafish, were introduced one at a time and in combination into previously germ-free intestines of the fish.

In a telling sequence, one bacterial species, Vibrio, drew numerous neutrophils, which indicated a rapid inflammatory response in one fish. Another species, Shewanella, inserted into a separate germ-free fish barely attracted an immune response. In a third germ-free fish, both species were introduced together and assembled with a ratio of 90- percent Vibrio to 10-percent Shewanella.

The inflammatory response in the third fish was completely controlled by the low-abundance species.

"Until now, we've only been able to capture proportional information, like you'd see displayed in a pie graph, of the makeup of various microbiota, in percentages of their abundance," Rolig said. "Biologists in this field have typically assumed an equal contribution based on that makeup."

Low counts of a bacterial species generally have been discounted in importance, but slight shifts in the ratios of abundant microbe populations have been thought to have roles in obesity, diabetes and inflammatory bowel diseases such as Crohn's disease.

That thinking is now changing, Rolig said. "The contribution of each bacterium is not equal. There is a per-capita effect that needs to be considered."

The keystone - an important participant that functions to regulate a healthy microbiota - may reside in low-abundant bacterial species. The research team found through additional scrutiny that these species secreted molecules - for now unidentified - that allowed them to dampen the immune response to the whole community.

"Now we've shown that these minor members can have a major impact. If we can identify these keystone species, and find that in a disease state one species may be missing, we might be able to go in with a specific probiotic to restore healthy functioning," said Rolig, who also is a scientist in the National Institutes of Health-funded Microbial Ecology and Theory of Animals Center for Systems Biology, known as the META Center, at the UO.

To develop a model to capture per-capita contributions of microbes in a population, Rolig and her co-authors -- biology graduate student Adam R. Burns, microbiologist Brendan Bohannan of the Institute of Ecology and Evolution and biologist Karen Guillemin, director of the META Center -- turned to UO physicist Raghuveer Parthasarathy. His math-driven model, detailed in the paper, provides formulas that predict collective inflammatory responses of combinations of bacteria.

"I'm really proud of this paper because it exemplifies an achievement of one of the major goals of the META Center for Systems Biology, namely to provide a predictive model of how host-microbe systems function," Guillemin said. "This experimental and modeling framework could be readily generalized to more complex systems such as humans, for example to predict disease severity in individuals with inflammatory bowel disease based on the pro-inflammatory capacity of their gut microbes as assayed in cell culture."

###

The National Institutes of Health supported the research through grants P50GMO98911 to support the META Center, IF32DK098884 for a postdoctoral fellowship to Rolig and P01HD22486 that supports the UO's zebrafish facility.

Sources: Annah S. Rolig, postdoctoral research associate, UO Institute of Molecular Biology, 541-346-5999, arolig@uoregon.edu, and Karen Guillemin, professor of biology and director of the META Center for Systems Biology, 541-346-5360, guilleman@molbio.uoregon.edu

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.

Links:

Paper abstract: http://www.cell.com/cell-host-microbe/abstract/S1931-3128%2815%2900419-9

META Center for Systems Biology: http://meta.uoregon.edu

Institute of Molecular Biology: http://molbio.uoregon.edu

Institute of Ecology and Evolution: http://ie2.uoregon.edu

Guillemin faculty page: http://molbio.uoregon.edu/guillemin/

Media Contact

Jim Barlow
jebarlow@uoregon.edu
541-346-3481

 @UOregonNews

http://uonews.uoregon.edu 

Jim Barlow | EurekAlert!

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>