Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Trail of Proteins

07.11.2014

Researchers are first to electrochemically detect protein binding on semiconductors

Scientists from Heidelberg University in collaboration with researchers from the University of Gießen have succeeded in electrochemically detecting protein binding on semiconductor materials for the first time, thanks to a newly developed investigative method based on differences in electrical charge.

Now the physicists are working on an optical process to detect and localise protein binding directly under a microscope, for example, a method that could launch new applications in medical research and diagnostics.

The basis for the electrochemical detection of protein binding are laboratory-produced biological membranes that consist of so-called supported lipid monolayers – two-dimensional molecular structures that are essential building blocks of cellular membranes. The researchers deposited these membranes onto nanostructures of the semiconductor gallium nitride (GaN), known for its chemical and electrochemical stability as well as its unique optoelectronic properties.

The scientists were then able to detect protein binding on the hybrid biomembrane-GaN structure for the first time using an electrochemical charge sensor. The sensor measures the charge differences that result when proteins bind to the so-called lipid anchors of the membrane. The development of the hybrid biomembrane-GaN structure is based on the work of Nataliya Frenkel, a PhD student in the Physical Chemistry of Biosystems research group led by Prof. Dr. Motomu Tanaka at Heidelberg University's Institute for Physical Chemistry.

For the sensor application, the Heidelberg researchers joined forces with semiconductor physicists from the University of Gießen under the direction of Prof. Dr. Martin Eickhoff.

Their findings, published in the journal “Advanced Functional Materials”, lay the basis for developing new processes that can also produce optical evidence of protein binding. The biological membranes will be deposited onto GaN-based quantum dots – structures the size of just a few nanometres.

The quantum dots will then be excited with light to emit radiation. Proteins binding to the membrane change the intensity of the emission. The researchers have already demonstrated this principle to be suitable for optical detection of protein binding. They are collaborating on the implementation with the CEA, France’s Commissariat à l’énergie atomique et aux énergies alternatives.

To intensify research in optical detection, Prof. Tanaka has initiated the formation of an international interdisciplinary association under the auspices of the German-Japanese University Consortium HeKKSaGOn. In addition to scientists from Heidelberg, the association includes working groups from the universities of Kyoto, Gießen and Barcelona as well as partners from the CEA. The University of Kyoto has provided the research cooperation with initial funding within its SPIRITS programme for two years.

Original publication:
N. Frenkel, J. Wallys, S. Lippert, J. Teubert, S. Kaufmann, A. Das, E. Monroy, M. Eickhoff, and M. Tanaka: High Precision, Electrochemical Detection of Reversible Binding of Recombinant Proteins on Wide Band Gap GaN Electrodes Functionalized with Biomembrane Models. Advanced Functional Materials, Volume 24, Issue 31, pages 4927-4934 (20 August 2014), doi: 10.1002/adfm.201400388

Contact:
Prof. Dr. Motomu Tanaka
Heidelberg University
Institute for Physical Chemistry
Phone: +49 06221 54-4916
tanaka@uni-heidelberg.de

Prof. Dr. Martin Eickhoff
University of Gießen
Institute of Physics I
Phone: +49 641 99-33120
eickhoff@physik.uni-giessen.de

Heidelberg University
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>