Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the path toward bionic enzymes

16.06.2016

Berkeley Lab scientists replace iron in muscle protein with non-biological metal

There may soon be a new way to make molecules to form the basis of pharmaceuticals, fuels, agrochemicals, materials, and an array of other products in our modern life. Chemists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have successfully married chemistry and biology to create reactions never before possible.


This is a graphic of an artificial metalloenzyme. Within the protein (grey) is a porphyrin (red), a component of natural heme proteins, with iridium as the active site (purple). The enzyme converts the molecules at the top to those at the bottom by reaction at a carbon-hydrogen bond (left) and carbon-carbon double bond (right), respectively.

Credit: John Hartwig Group/Berkeley Lab and UC Berkeley

They did this by replacing the iron normally found in the muscle protein myoglobin with iridium, a noble metal not known to be used by living systems. They then tested the iridium-enhanced myoglobin and found that it led to a new type of chemical reaction for this protein, the conversion of a carbon-hydrogen bond to a carbon-carbon single bond. The bionic enzyme, an artificial metalloenzyme, was thus capable of catalyzing a reaction for which there is no known natural or engineered enzyme.

This work, led by John Hartwig, a senior faculty scientist in Berkeley Lab's Chemical Sciences Division, is described in a study published online this week in the journal Nature.

"We have blended two different types of catalysts in a way that has not been done before," said Hartwig, who is also a UC Berkeley professor of chemistry. "By doing so, we are opening the door to the conversion of complex structures in biomass to single products; of natural gas to higher value materials; and molecules for drugs to treat human disease. Because the scope of catalysis in the chemical industry is so broad, this discovery could have an impact on almost every aspect of our lives."

Getting the best of both worlds

The study authors noted different pros and cons between biological and chemical catalysts. Chemical catalysts include the catalytic converters that detoxify pollutants in exhaust emissions, solids that are used to make some of the most common plastics like polyethylene; or soluble molecules used to make some of the most common medicines that treat diseases from diabetes or depression.

Enzymes, or biological catalysts, are proteins that speed up chemical reactions in living organisms. Biological catalysts are prepared from renewable materials, operate near room temperature and atmospheric pressure, in water at neutral pH, and can be evolved in the laboratory using the modern methods of molecular biology to be more active, more selective or longer-lived.

Because enzymes are highly specific, more direct synthetic routes to desired molecules can be conceived, and as a result, less waste is produced in the course of producing those molecules. In the biosynthetic pathway to the creation of cholesterol, for instance, there are more than 50 different chemical bonds present - many of them almost identical to each other - and an enzyme would cause a reaction to occur at just one of those bonds.

Although enzymes possess many advantages over chemical catalysts, the researchers noted that chemical catalysts built from precious metals enable a much larger set of reactions than enzymes.

"Many enzymes contain metals, but that metal is usually iron or copper, and the set of reactions catalyzed by iron or copper is much smaller than the set of reactions catalyzed by the precious metals," said Hartwig. "Enzymes catalyze reactions necessary for life, not the reactions needed to create the everyday objects around us. We found a way to replace the iron in the protein myoglobin with a precious metal which resulted in an artificial enzyme that has the diverse reactivity of the precious metal combined with the high selectivity and capability to function under mild conditions found in an enzyme."

Evolving new functions

Hartwig worked with Doug Clark, faculty scientist at Berkeley Lab; Hanna Key, a UC Berkeley graduate student in chemistry; and Pawel Dydio, a postdoctoral fellow at Berkeley Lab and UC Berkeley. Key and Dydio are co-lead authors of the study.

The iron ions in myoglobin, a type of heme protein, binds to an organic compound called porphyrin. The resulting ferroporphyrin complex captures oxygen to nourish muscle tissue.

The researchers started by manipulating E. coli bacteria to create myoglobin that lacked iron. They then incorporated iridium into the muscle protein at the site where iron would normally be. Experiments showed that iridium could be bound at the site typically occupied by iron so that myoglobin could function as a new enzyme.

"Perhaps most important, this new artificial enzyme can be evolved in the laboratory to selectively form one product over another," said Hartwig. "We want to take the catalysts that chemists have created and combine them with naturally occurring enzymes. We can use that structure to control the selectivity of the products created."

The work was funded through Berkeley Lab's Laboratory Directed Research and Development (LDRD) program designed to seed innovative science and new research directions.

"This is the first proof of principle of a new strategy to catalysis," said Hartwig. "We've synthetically changed a protein to give it the functionality of a chemical catalyst while keeping in enough of the biology to allow us to use methods of molecular biology to evolve new functions. The long-term potential of this approach seems limitless."

###

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Sarah Yang
scyang@lbl.gov
510-486-4575

 @BerkeleyLab

http://www.lbl.gov 

Sarah Yang | EurekAlert!

Further reports about: Laboratory artificial enzyme bonds enzyme muscle protein precious metals

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>