Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ötzi the Iceman: Researchers validate the stability of genetic markers

16.02.2017

Biomarkers are biological attributes that can give doctors or researchers clues about the health status or illnesses of a patient. Scientists are placing great hope in a new type of biomarker, so-called microRNAs. These short ribonucleic acid molecules are notable for their very high level of stability. Researchers at Saarland University, the University of Luxembourg and the Eurac Research center in Bozen have now established that such microRNAs can remain stable even after 5300 years. They have found the molecules in the well-known glacier mummy "Ötzi".

A number of facts have been scientifically proven about the glacier mummy, known as "the Iceman" or "Ötzi," found in the Ötztal Alps (South Tyrol) in 1991. Through imaging techniques, we know about degeneration in his lumbar spine and a fatal arrow wound in his left shoulder. DNA analyses showed that Ötzi was lactose intolerant, and had brown eyes and blood type 0. Now a study of Ötzi's microRNAs has also been completed. MicroRNAs are very small pieces of ribonucleic acid (RNA) and play a central role in the regulation of genes.


Researchers found short ribonucleic acid molecules (microRNA) even in mummies like Ötzi.

Andreas Keller, Universität des Saarlandes


Professor Andreas Keller

Universität des Saarlandes

Although these molecules are very stable in tissues, prior to this study it was unclear whether they could still be found in human tissues after thousands of years. Therefore, Professors Andreas Keller and Eckart Meese of Saarland University, Stephanie Kreis of the University of Luxembourg, and Professor Albert Zink and Frank Maixner of Eurac Research in Bozen took on the challenge.

They analyzed not only tissue samples from the Iceman, but also those from a mummy of a soldier fallen in World War I. "Our investigation provides evidence that we can analyze microRNA even after thousands of years," explains Andreas Keller, Professor of Clinical Bioinformatics at Saarland University, who coordinated the study.

The scientists took samples from Ötzi's skin, stomach, and stomach contents. "It was a challenge to extract this genetic material in significant quantities and sufficient quality from the mummified tissue samples, and to measure and quantify it with the newest, very precise methods," reports Stephanie Kreis, who isolated the microRNAs at the University of Luxembourg.

Some molecules were found that were present predominantly in the ancient tissues. Conversely, some of the biomarkers that are well-known today were not found in Ötzi. According to Professor Zink from Eurac Research, the microRNAs are the next important class of molecules from Ötzi to receive intensive examination.

Professor Meese, head of the Institute of Human Genetics at Saarland University, claims that the stability of these biomarkers is also important for people today. "It is vital for clinical applications," explains Meese.

"It's evident that the potential of microRNA is much greater than we previously thought. We still don't know enough about how these molecules influence specific genes, entire gene families, or biochemical reaction pathways. When we investigate this further, it's possible microRNAs will become new stars in therapy. Until then, however, there is a lot more work to do," concludes Professor Keller.

Further information:
Publication
"miRNAs in ancient tissue specimens of the Tyrolean Iceman"
https://doi.org/10.1093/molbev/msw291

Questions can be directed to:
Professor Andreas Keller
Chair for Clinical Bioinformatics
Saarland University
Tel.: +49 681 302 68611
E-mail: andreas.keller@ccb.uni-saarland.de

Professor Albert Zink
Institute for Mummies and the Iceman
Eurac Research
Tel.: +39 0471 055561
E-mail: albert.zink@eurac.edu

Dr. Stephanie Kreis
Life Sciences Research Unit
University of Luxembourg
Tel.: +352 4666 44 6884
E-mail: stephanie.kreis@uni.lu

Editor:
Gordon Bolduan
Competence Center of Computer Science Saarland
Saarland Informatics Campus E1.7
Saarland University
Tel.: +49 681 302 70741
E-mail: gbolduan@mmci.uni-saarland.de

Weitere Informationen:

https://doi.org/10.1093/molbev/msw291

Friederike Meyer zu Tittingdorf | Universität des Saarlandes
Further information:
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>