Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017

The female sex hormone oestrogen protects the structural stability of bones. To date, however, it had been unclear exactly which cells were involved in the hormone’s protective function in preventing changes in bone density. Researchers at Vetmeduni Vienna were able to show for the first time that oestrogen uses a certain cell type as a “mediator” for its beneficial effects on bone. When oestrogen binds to these so-called “bone lining cells”, which cover the bone surfaces, it regulates the expression of a protein called RANKL in these cells. Oestrogen deficiency leads to uncontrolled expression of RANKL, which can trigger pathological changes in the bones. Published in Scientific Reports.

The most important female sex hormone, oestrogen, plays a crucial role in the regulation of bone mass. Oestrogen deficiency is known to be a major cause of postmenopausal osteoporosis, or bone weakness. Skeletal stability and pathological skeletal changes thus depend directly on the hormone’s availability and its interaction with the bone cells.


Estrogen protects bones from bone Resorption by Controlling RANKL in bone lining cells.

Figure: Reinhold G. Erben, Scientific Reports: http://creativecommons.org/licenses/by/4.0/

Until now, however, the actual target cells responsible for mediating the effect of oestrogen on bone had still been unknown. Researchers at Vetmeduni Vienna have now demonstrated that bone lining cells act as “gatekeepers” for the hormone. By binding to these cells, oestrogen controls the expression of RANKL, an important factor in bone turnover and remodelling.

Oestrogen uses a certain cell type to mediate its effect on bone density

The development of bone structure depends on a complex system of hormones and proteins. One important component is the signalling molecule RANKL. It influences the development of special cells, the so-called osteoclasts that are responsible for bone resorption. A lack of oestrogen or the corresponding cell receptors where it can bind results in the overproduction of RANKL, which triggers a variety of pathological bone changes.

Several studies confirm oestrogen’s role in regulating RANKL production and thus in protecting skeletal integrity. “Which cells it must bind to in order to have this effect, however, had been a matter of debate,” says study director Reinhold Erben from the Unit of Physiology, Pathophysiology and Experimental Endocrinology. “We were now able to confirm that oestrogen’s effect on bone occurs primarily through binding to the bone lining cells.”

The bone lining cells cover the bone surfaces and contact other bone cells, such as the osteocytes that reside inside the bones, through cell-to-cell contact. They had been suspected of being involved in the regulation of bone resorption through the osteoclasts. The fact that the bone lining cells, as target cells for oestrogen, play a role in bone maintenance confirms this suspicion.

Tissue cells surrounding the bones act as mediator of the hormonal effect

Erben and his team based their study on the use of a special mouse model and new experimental methods. “We used different groups of mice, in which either the oestrogen receptor or RANKL was inactivated in hematopoietic cells or in mesenchymal cells, to be able to identify the target cells of the hormone. The effect we were looking for was found only in mesenchymal cells,” explains Erben.

To identify the cells, the research team used a special method called laser capture microdissection to exactly separate individual cell types from the remaining tissue. They then determined the gene frequency using RNA analysis and were so able to confirm the bone lining cells as the primary target cells.

“The bone lining cells also make sense as gatekeepers or mediators for the effect of the bound hormone because of their position on the bone and their connection to the other bone cells,” says Erben. “Future studies are needed to answer whether other hormones also influence bone turnover via this cell type or if they use other cells. The aim of our study was merely to answer the question of how the interaction of oestrogen with bone functions.”

Service:
The article “Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells“ by Carmen Streicher, Alexandra Heyny, Olena Andrukhova, Barbara Haigl, Svetlana Slavic, Christiane Schüler, Karoline Kollmann, Ingrid Kantner, Veronika Sexl, Miriam Kleiter, Lorenz C. Hofbauer, Paul J. Kostenuik und Reinhold G. Erben was published in Scientific Reports.
https://www.nature.com/articles/s41598-017-06614-0?WT.feed_name=subjects_medical...

About the University of Veterinary Medicine, Vienna
The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Reinhold Erben
Unit of Physiology, Pathophysiology and Experimental Endocrinology
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-4550
reinhold.erben@vetmeduni.ac.at

Released by:
Georg Mair
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1165
georg.mair@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2017/...

Mag.rer.nat Georg Mair | Veterinärmedizinische Universität Wien

Further reports about: Pathophysiology RANKL Vetmeduni bone cells cell type mesenchymal cells oestrogen

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>