Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing evolution in real time

14.12.2015

HIV mutates rapidly and forms countless virus variants in the patient. A collaboration of scientists from the group of Dr. Richard Neher, Max Planck Institute for Developmental Biology, and scientists from Stockholm analyzed the evolution of HIV using patient samples from early to chronic infection.

To characterize the evolution and adaptation of HIV variants, the researchers analyzed the viral RNA from samples of HIV-infected patients for several years, using cutting-edge sequencing methods.


HIV-infected T cell

NIAID/flickr.com CC BY 2.0

The scientists could show that the development of virus variants in each individual follows reproducible patterns. Certain regions of the virus accumulate mutations much faster than others: regions in the DNA that contain important functions for the virus reproduction vary less and almost all viruses from one sample have the same sequence at such sites.

At other sites of the genome, where mutations are not as detrimental for the virus, variation increases steadily and for a large fraction of these sites alternative variations circulate in the virus population. This diversity allows the viral population to adapt rapidly.

The viruses change at up to one percent of genome positions per year – this corresponds to the difference between human and chimpanzee. The frequent mutations help the virus to hide from the immune system – at the expense of the viral functionality. The scientists calculated the globally most frequent state for every site in the HIV genome.

They compared this global consensus sequence with the sequences from the patient samples. Surprisingly, 30 percent of all variations were reversions towards the consensus sequence. “One of our principal observations was that the virus has a kind of favourite sequence. The immune system pushes the virus away from this sequence. When the pressure of the immune system ceases, the viruses go back to this sequence”, explains Neher.

This happens for example when the virus is transmitted to another person, whose immune system recognizes other parts of the virus.

The results could also help to find vaccines against HIV: “Although HIV exists in many different strains, we found that the weak points of the virus are often the same in completely unrelated infections. One should now focus on these common weak points to develop vaccines”, says Fabio Zanini, first author of the study.

The development of HIV in the patients is also a good model to analyze general dynamics of evolution. In the case of HIV, the scientists can observe evolution directly from year to year and study processes that would take millions of years in other organisms.

Original Publication:
Population genomics of intrapatient HIV-1 evolution
http://dx.doi.org/10.7554/eLife.11282
Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license.

Contact:
Dr. Richard Neher
Mail: richard.neher@tuebingen.mpg.de

Nadja Winter (Pressereferentin)
Tel.: 07071 601-444
Mail: presse-eb@tuebingen.mpg.de

About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 360 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Weitere Informationen:

http://elifesciences.org/content/early/2015/12/11/eLife.11282

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Further information:
http://eb.mpg.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>