Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Observing evolution in real time


HIV mutates rapidly and forms countless virus variants in the patient. A collaboration of scientists from the group of Dr. Richard Neher, Max Planck Institute for Developmental Biology, and scientists from Stockholm analyzed the evolution of HIV using patient samples from early to chronic infection.

To characterize the evolution and adaptation of HIV variants, the researchers analyzed the viral RNA from samples of HIV-infected patients for several years, using cutting-edge sequencing methods.

HIV-infected T cell


The scientists could show that the development of virus variants in each individual follows reproducible patterns. Certain regions of the virus accumulate mutations much faster than others: regions in the DNA that contain important functions for the virus reproduction vary less and almost all viruses from one sample have the same sequence at such sites.

At other sites of the genome, where mutations are not as detrimental for the virus, variation increases steadily and for a large fraction of these sites alternative variations circulate in the virus population. This diversity allows the viral population to adapt rapidly.

The viruses change at up to one percent of genome positions per year – this corresponds to the difference between human and chimpanzee. The frequent mutations help the virus to hide from the immune system – at the expense of the viral functionality. The scientists calculated the globally most frequent state for every site in the HIV genome.

They compared this global consensus sequence with the sequences from the patient samples. Surprisingly, 30 percent of all variations were reversions towards the consensus sequence. “One of our principal observations was that the virus has a kind of favourite sequence. The immune system pushes the virus away from this sequence. When the pressure of the immune system ceases, the viruses go back to this sequence”, explains Neher.

This happens for example when the virus is transmitted to another person, whose immune system recognizes other parts of the virus.

The results could also help to find vaccines against HIV: “Although HIV exists in many different strains, we found that the weak points of the virus are often the same in completely unrelated infections. One should now focus on these common weak points to develop vaccines”, says Fabio Zanini, first author of the study.

The development of HIV in the patients is also a good model to analyze general dynamics of evolution. In the case of HIV, the scientists can observe evolution directly from year to year and study processes that would take millions of years in other organisms.

Original Publication:
Population genomics of intrapatient HIV-1 evolution
Contents, including text, figures, and data, are free to reuse under a CC BY 4.0 license.

Dr. Richard Neher

Nadja Winter (Pressereferentin)
Tel.: 07071 601-444

About us:
The Max Planck Institute for Developmental Biology conducts basic research in the fields of biochemistry, genetics and evolutionary biology. It employs about 360 people and is located at the Max Planck Campus in Tübingen. The Max Planck Institute for Developmental Biology is one of 83 research institutes that the Max Planck Society for the Advancement of Science maintains in Germany.

Weitere Informationen:

Nadja Winter | Max-Planck-Institut für Entwicklungsbiologie
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>