Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity – like father, like son

05.12.2014

Fruit flies pass down changes in their metabolism from father to son

The consumption of a sugary banquet before sex can have far-reaching consequences for a fruit fly and its offspring: it makes the young flies more prone to obesity. Together with researchers from Spain and Sweden, scientists from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have discovered that even a brief change in the diet of male fruit flies triggers obesity in the next generation.


Researchers can identify the obese flies by their red eyes: Due to the particularly sugary diet of their fathers, the genes for a red dye in the eye as well as other metabolism factors can be identified in the sons.

© MPI f. Immunobiology and Epigenetics/ A. Pospisilik

Specifically, high-sugar nutrition consumed one to two days before mating causes the male offspring to accumulate more body fat – but only if the young insects have a particularly high-sugar diet. Importantly, the international research team identified the first gene networks for generating such intergenerational responses.

The food consumed by the father activates genes that can cause epigenetic changes in the genome. These changes are inherited and alter metabolic gene control in the next generation. Moreover, the researchers discovered a similar gene network in humans and mice which also predicts their susceptibility to obesity.

Our DNA is a determining factor in our weight – obesity is largely due to our genes. That said, environmental inputs, particularly in parents or during early development, can also affect body weight through epigenetic changes. These modifications can be inherited, although they do not change the genetic code.

The Max Planck scientists in Freiburg have now discovered that the diet of male fruit flies can influence the body weight of their offspring in this way. The researchers fed the adult male flies with food of varying sugar content two days before mating. The flies that hatched from the eggs were then given normal or high-sugar food. For technical reasons, the researchers only carried out the tests on male flies; comparable results, however, would probably have been obtained using female flies.

The fathers’ diet had no impact on sons that only consumed a balanced diet. However, the weight pattern was very different if the young flies had eaten particularly sugary food: the young animals whose fathers had consumed very low or high sugar food tended to be overweight; in other words the offspring were obesity susceptible. They had a higher proportion of body fat and also ate more than the sons of fathers that consumed a balanced diet. “So there is a U-shaped effect here: extreme sugar values in the father’s diet – be they high or low – have the greatest consequences for the next generation,” explains Anita Öst from the Max Planck Institute of Immunobiology and Epigenetics, who now researches at Linköping University in Sweden. The effect on body weight is not transmitted any further, however, as the scientists did not observe it in the grandchildren’s generation.

It appears that the inheritance of the father’s nutritional status is dependent on the methylation pattern in the proteins that package DNA. Methyl appendages, which are small chemical groups, control how compactly DNA is packaged. The level of gene expression depends on this. Genetically modified flies, in which different methylation enzymes are partly blocked, do not pass on their nutritional status to their sons. “We tested different fly mutants and identified seven genes which control the packaging of the DNA,” reports Adelheid Lempradl from the Freiburg-based Max Planck Institute. In the case of fathers with a high-sugar diet, the packaging of the DNA in the sons is loosened so that more metabolism genes can be expressed. This effect endures throughout the life of the fly.

It appears that a similar mechanism may also exist in humans. The researchers evaluated the data from tests on Pima Indians – a group of North American indigenous people who frequently suffer from obesity – and monozygotic twins. The two studies from 2005 and 2008 compare normal weight and obese individuals and their genes. “The data show that obese people have the same gene signature as the fruit flies. Thus, susceptibility to a high body weight in humans is also predicted by certain methyltransferases being less active,” explains J. Andrew Pospisilik, Group Leader at the Max Planck Institute of Immunobiology and Epigenetics. According to the researchers, the same genes also regulate weight in mice.


Contact

Dr. J. Andrew Pospisilik

Max Planck Institute of Immunobiology and Epigenetics, Freiburg

Phone: +49 7615 108-757

Email: pospisilik@immunbio.mpg.de


Original publication
Anita Öst, Adelheid Lempradl, Eduard Casas, Melanie Weigert, Theo Tiko, Merdin Deniz, Lorena Pantano, Ulrike Boenisch, Pavel M. Itskov, Marlon Stoeckius, Marius Ruf, Nikolaus Rajewsky, Gunter Reuter, Nicola Iovino, Carlos Ribeiro, Mattias Alenius, Steffen Heyne, Tanya Vavouri, J. Andrew Pospisilik

Paternal diet defines offspring chromatin state and intergenerational obesity

Cell, 4 December 2014

Dr. J. Andrew Pospisilik | Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Further information:
http://www.mpg.de/8786045/paternal-diet-obesity

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>