Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity – like father, like son

05.12.2014

Fruit flies pass down changes in their metabolism from father to son

The consumption of a sugary banquet before sex can have far-reaching consequences for a fruit fly and its offspring: it makes the young flies more prone to obesity. Together with researchers from Spain and Sweden, scientists from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg have discovered that even a brief change in the diet of male fruit flies triggers obesity in the next generation.


Researchers can identify the obese flies by their red eyes: Due to the particularly sugary diet of their fathers, the genes for a red dye in the eye as well as other metabolism factors can be identified in the sons.

© MPI f. Immunobiology and Epigenetics/ A. Pospisilik

Specifically, high-sugar nutrition consumed one to two days before mating causes the male offspring to accumulate more body fat – but only if the young insects have a particularly high-sugar diet. Importantly, the international research team identified the first gene networks for generating such intergenerational responses.

The food consumed by the father activates genes that can cause epigenetic changes in the genome. These changes are inherited and alter metabolic gene control in the next generation. Moreover, the researchers discovered a similar gene network in humans and mice which also predicts their susceptibility to obesity.

Our DNA is a determining factor in our weight – obesity is largely due to our genes. That said, environmental inputs, particularly in parents or during early development, can also affect body weight through epigenetic changes. These modifications can be inherited, although they do not change the genetic code.

The Max Planck scientists in Freiburg have now discovered that the diet of male fruit flies can influence the body weight of their offspring in this way. The researchers fed the adult male flies with food of varying sugar content two days before mating. The flies that hatched from the eggs were then given normal or high-sugar food. For technical reasons, the researchers only carried out the tests on male flies; comparable results, however, would probably have been obtained using female flies.

The fathers’ diet had no impact on sons that only consumed a balanced diet. However, the weight pattern was very different if the young flies had eaten particularly sugary food: the young animals whose fathers had consumed very low or high sugar food tended to be overweight; in other words the offspring were obesity susceptible. They had a higher proportion of body fat and also ate more than the sons of fathers that consumed a balanced diet. “So there is a U-shaped effect here: extreme sugar values in the father’s diet – be they high or low – have the greatest consequences for the next generation,” explains Anita Öst from the Max Planck Institute of Immunobiology and Epigenetics, who now researches at Linköping University in Sweden. The effect on body weight is not transmitted any further, however, as the scientists did not observe it in the grandchildren’s generation.

It appears that the inheritance of the father’s nutritional status is dependent on the methylation pattern in the proteins that package DNA. Methyl appendages, which are small chemical groups, control how compactly DNA is packaged. The level of gene expression depends on this. Genetically modified flies, in which different methylation enzymes are partly blocked, do not pass on their nutritional status to their sons. “We tested different fly mutants and identified seven genes which control the packaging of the DNA,” reports Adelheid Lempradl from the Freiburg-based Max Planck Institute. In the case of fathers with a high-sugar diet, the packaging of the DNA in the sons is loosened so that more metabolism genes can be expressed. This effect endures throughout the life of the fly.

It appears that a similar mechanism may also exist in humans. The researchers evaluated the data from tests on Pima Indians – a group of North American indigenous people who frequently suffer from obesity – and monozygotic twins. The two studies from 2005 and 2008 compare normal weight and obese individuals and their genes. “The data show that obese people have the same gene signature as the fruit flies. Thus, susceptibility to a high body weight in humans is also predicted by certain methyltransferases being less active,” explains J. Andrew Pospisilik, Group Leader at the Max Planck Institute of Immunobiology and Epigenetics. According to the researchers, the same genes also regulate weight in mice.


Contact

Dr. J. Andrew Pospisilik

Max Planck Institute of Immunobiology and Epigenetics, Freiburg

Phone: +49 7615 108-757

Email: pospisilik@immunbio.mpg.de


Original publication
Anita Öst, Adelheid Lempradl, Eduard Casas, Melanie Weigert, Theo Tiko, Merdin Deniz, Lorena Pantano, Ulrike Boenisch, Pavel M. Itskov, Marlon Stoeckius, Marius Ruf, Nikolaus Rajewsky, Gunter Reuter, Nicola Iovino, Carlos Ribeiro, Mattias Alenius, Steffen Heyne, Tanya Vavouri, J. Andrew Pospisilik

Paternal diet defines offspring chromatin state and intergenerational obesity

Cell, 4 December 2014

Dr. J. Andrew Pospisilik | Max Planck Institute of Immunobiology and Epigenetics, Freiburg
Further information:
http://www.mpg.de/8786045/paternal-diet-obesity

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>