Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nucleolus is a life expectancy predictor


31.08.2017

Scientists discover that nucleolar size correlates with health and lifespan in organisms as diverse as roundworms, flies and humans

Can a cell show its biological age? And is it possible to foresee an animal’s lifespan? Scientists from the Max Planck Institute for Biology of Ageing in Cologne discovered a connection between the size of the nucleolus - a tiny structure in the very center of the cell - and life expectancy. This could be used as a molecular marker for health and ageing.


Long-lived fruit flies (right) have smaller nucleoli than their shorter-lived relatives (left).

Source: Max-Planck-Institut für Biologie des Alterns

Ageing researchers have long been searching for so-called biomarkers of ageing, which allow predictions about health and lifespan of organisms. Varnesh Tiku, a scientist in the department of Director Adam Antebi at the Max Planck Institute for Biology of Aging, recently made a breakthrough discovery by studying long-lived mutants of the roundworm Caenorhabditis elegans.

All of the mutants showed smaller nucleoli than their shorter-lived relatives, independent of the pathway that led to their longevity. The nucleolus is a tiny structure within the cell nucleus where special RNA molecules and proteins are assembled to form ribosomes, the protein factories of cells. The strong correlation between nucleolar size and lifespan enables the Max Planck scientists to predict whether the worm will be short-lived or long-lived.

Human muscle biopsies

“We also observed reduced nucleolar size in long-lived animals from other model organisms, such as fruit flies and mice”, explains Antebi. “This correlation may even hold true in humans. When we analyzed muscle biopsies from individuals older than sixty years that underwent modest dietary restriction coupled with exercise – a common way to prolong lifespan and increase health – we found that they had smaller nucleoli in their muscle cells after the intervention than before.”

“Chicken or egg”?

But is the reduced nucleolar size actually responsible for the increased life expectancy or is it just a read-out without being causal? “We think that the size of the nucleolus is not only a biomarker for longevity, but that the molecules within the nucleolus could causally impact life expectancy”, explains Antebi. The scientists already got a glimpse that this hypothesis is correct:

They observed that long-lived mutants with small nucleoli also show reduced levels of a nucleolar protein called fibrillarin, which aids in the assembly of the protein factory. When fibrillarin was reduced, the roundworms lived longer. This suggests that levels of fibrillarin in the nucleolus regulate life span.

But do these results mean that in the future we could go to the doctor, measure our nucleoli and estimate our life expectancy? “Perhaps, but there is still a lot of work to be done – more importantly, we hope that our discovery will help us to monitor interventions associated with increased health and longevity”, says Antebi.

The research of Adam Antebi is supported by the Max Planck Foundation.

Weitere Informationen:

https://www.age.mpg.de/public-relations/news/detail/nucleolus-is-a-life-expectan...
https://www.nature.com/articles/ncomms16083?WT.feed_name=subjects_genetics

Dr. Maren Berghoff | Max-Planck-Institut für Biologie des Alterns
Further information:
http://www.age.mpg.de

More articles from Life Sciences:

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

nachricht Keeping the excitement under control
18.04.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>