Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism to steer cell identities gives clue on how organisms develop

04.10.2016

Scientists discovered a new way in which microRNAs can determine the fate of cells in the course of their development. This could be a key to understanding how complex organisms are built, say researchers from the Institute of Molecular Pathology (IMP) in Vienna.

A class of genes called microRNAs are known to prevent gene expression. In a recent study, scientists could show that down-regulating genes through microRNAs can determine unique properties of specific cells in an unexpected way. This finding was now reported in the journal “Genes & Development”.


Luisa Cochella and Model organism C.elegans

IMP/Beck

“We set out from a curious observation in the nematode worm C. elegans”, explains Luisa Cochella. “We noticed that the gene mir-791 was expressed specifically in neurons we knew were responsible for the detection of carbon dioxide.” The tiny worm is a common model organism because its anatomy and cell functions are very well-understood and can be observed easily under a microscope. When the worms detect carbon dioxide, they start moving in a characteristic way, giving the scientists an easy tool to indirectly “watch” molecular processes by observing the worms’ behaviour.

When the scientists removed mir-791 from the worms, the animals had trouble responding to carbon dioxide. Normally, mir-791 prevents the expression of two genes exclusively in the neurons that detect carbon dioxide, while these same two genes are expressed in pretty much all other cells of the worm. When this repression mechanism fails, the carbon dioxide sensing neurons do not work properly and animals cannot respond adequately to an environmental cue that, in its natural environment, could determine whether the worm lives or dies. The question how the identity of cells is determined in the course of their development, however, goes far beyond nematodes – it is a fundamental question in biology.

The cells that form our bodies belong to hundreds of different cell types that are shaped by the combinations of genes they express. For example, hemoglobin is produced in red blood cells where it is necessary for oxygen transport, while neurotransmitter receptors are made in neurons where they allow these cells to communicate with each other. On the other hand, a number of genes that are required for more common functions of cells are expressed by most, if not all cells. These are called ubiquitous genes.

In rare cases, ubiquitous genes are not expressed in a specific cell type, where reduced levels of these genes are necessary for the correct function of this particular cell type. The unique properties of a cell can therefore not only be specified by the genes it expresses, but also by the genes it prevents from being expressed. However, the mechanisms that underlie the highly specific repression of genes in some cells have remained puzzling, which is why this study is important.

What was characterised as a developmental mechanism could also be relevant for evolution. The responses of different animals to carbon dioxide vary a lot – some are attracted to it because it is linked to food sources, others flee from it because carbon dioxide is often high in environments with little oxygen. “Given this, our work has the additional implication that microRNAs may be good candidates to give species new tools to adapt to different environments”, says Cochella, who points at the known fact that microRNAs evolve faster than the bigger protein-coding genes.

The IMP, with 15 groups focusing on a diversity of fundamental research questions, provided the perfect place for Cochella and her team to carry out this study. The collaboration with co-author Manuel Zimmer, who has long established ways to quantitatively measure behavioural responses in C. elegans, was instrumental to this project.

In addition, this study provides insight into understanding microRNA functions. “In C. elegans there are between 150 and 200 miRNAs but we only know the functions of 25 or so of them”, says Cochella. This is not only true for the worm, a similarly low fraction of miRNAs has been characterized out of the hundreds found in humans, even though as a whole, miRNAs are essential for animal development and function. This study hints at why miRNA functions have been difficult to uncover: many miRNAs may be only expressed in restricted cell types and finding their functions may require methods as precise as those used in the worm to know exactly which and how cells are affected.

Original Publication
Tanja Drexel, Katharina Mahofsky, Richard Latham, Manuel Zimmer and Luisa Cochella: Neuron-type specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans. Genes & Dev., Published in Advance September 29, 2016, doi: 10.1101/gad.287904.116

Image caption
“Luisa Cochella studies the ways in which genes specify different cell identities, using a tiny worm as a model organism. The microscope image here reveals the cells that allow the worm to smell carbon dioxide.” © IMP/Beck

About Luisa Cochella
Luisa Cochella studies the ways in which gene expression must be regulated during development in order to specify the properties of the hundreds of different cell types that give rise to a complex multicellular animal. She studies this in the tiny nematode worm C. elegans. This worm is an extremely useful model organism to address this question because it is made of relatively few cells that can easily be followed during development.
Luisa Cochella did her undergraduate studies at Universidad de Buenos Aires in her home country Argentina, followed by PhD studies at Johns Hopkins School of Medicine in Baltimore (USA). After her post-doctoral work at Columbia University in New York (USA), Dr. Cochella took the next step in her outstanding academic career and became a group leader at the Research Institute of Molecular Pathology (IMP) in Vienna (Austria), in January 2013.

About the IMP
The renowned Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Dr. Benedikt Mandl
IMP - Communications
Tel. +43 1 79730 3627
benedikt.mandl@imp.ac.at

www.imp.ac.at

Weitere Informationen:

http://www.imp.ac.at/pressefoto-Cochella

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molekulare Pathologie carbon dioxide cell types elegans genes miRNAs neurons

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>