Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mechanism to steer cell identities gives clue on how organisms develop

04.10.2016

Scientists discovered a new way in which microRNAs can determine the fate of cells in the course of their development. This could be a key to understanding how complex organisms are built, say researchers from the Institute of Molecular Pathology (IMP) in Vienna.

A class of genes called microRNAs are known to prevent gene expression. In a recent study, scientists could show that down-regulating genes through microRNAs can determine unique properties of specific cells in an unexpected way. This finding was now reported in the journal “Genes & Development”.


Luisa Cochella and Model organism C.elegans

IMP/Beck

“We set out from a curious observation in the nematode worm C. elegans”, explains Luisa Cochella. “We noticed that the gene mir-791 was expressed specifically in neurons we knew were responsible for the detection of carbon dioxide.” The tiny worm is a common model organism because its anatomy and cell functions are very well-understood and can be observed easily under a microscope. When the worms detect carbon dioxide, they start moving in a characteristic way, giving the scientists an easy tool to indirectly “watch” molecular processes by observing the worms’ behaviour.

When the scientists removed mir-791 from the worms, the animals had trouble responding to carbon dioxide. Normally, mir-791 prevents the expression of two genes exclusively in the neurons that detect carbon dioxide, while these same two genes are expressed in pretty much all other cells of the worm. When this repression mechanism fails, the carbon dioxide sensing neurons do not work properly and animals cannot respond adequately to an environmental cue that, in its natural environment, could determine whether the worm lives or dies. The question how the identity of cells is determined in the course of their development, however, goes far beyond nematodes – it is a fundamental question in biology.

The cells that form our bodies belong to hundreds of different cell types that are shaped by the combinations of genes they express. For example, hemoglobin is produced in red blood cells where it is necessary for oxygen transport, while neurotransmitter receptors are made in neurons where they allow these cells to communicate with each other. On the other hand, a number of genes that are required for more common functions of cells are expressed by most, if not all cells. These are called ubiquitous genes.

In rare cases, ubiquitous genes are not expressed in a specific cell type, where reduced levels of these genes are necessary for the correct function of this particular cell type. The unique properties of a cell can therefore not only be specified by the genes it expresses, but also by the genes it prevents from being expressed. However, the mechanisms that underlie the highly specific repression of genes in some cells have remained puzzling, which is why this study is important.

What was characterised as a developmental mechanism could also be relevant for evolution. The responses of different animals to carbon dioxide vary a lot – some are attracted to it because it is linked to food sources, others flee from it because carbon dioxide is often high in environments with little oxygen. “Given this, our work has the additional implication that microRNAs may be good candidates to give species new tools to adapt to different environments”, says Cochella, who points at the known fact that microRNAs evolve faster than the bigger protein-coding genes.

The IMP, with 15 groups focusing on a diversity of fundamental research questions, provided the perfect place for Cochella and her team to carry out this study. The collaboration with co-author Manuel Zimmer, who has long established ways to quantitatively measure behavioural responses in C. elegans, was instrumental to this project.

In addition, this study provides insight into understanding microRNA functions. “In C. elegans there are between 150 and 200 miRNAs but we only know the functions of 25 or so of them”, says Cochella. This is not only true for the worm, a similarly low fraction of miRNAs has been characterized out of the hundreds found in humans, even though as a whole, miRNAs are essential for animal development and function. This study hints at why miRNA functions have been difficult to uncover: many miRNAs may be only expressed in restricted cell types and finding their functions may require methods as precise as those used in the worm to know exactly which and how cells are affected.

Original Publication
Tanja Drexel, Katharina Mahofsky, Richard Latham, Manuel Zimmer and Luisa Cochella: Neuron-type specific miRNA represses two broadly expressed genes to modulate an avoidance behavior in C. elegans. Genes & Dev., Published in Advance September 29, 2016, doi: 10.1101/gad.287904.116

Image caption
“Luisa Cochella studies the ways in which genes specify different cell identities, using a tiny worm as a model organism. The microscope image here reveals the cells that allow the worm to smell carbon dioxide.” © IMP/Beck

About Luisa Cochella
Luisa Cochella studies the ways in which gene expression must be regulated during development in order to specify the properties of the hundreds of different cell types that give rise to a complex multicellular animal. She studies this in the tiny nematode worm C. elegans. This worm is an extremely useful model organism to address this question because it is made of relatively few cells that can easily be followed during development.
Luisa Cochella did her undergraduate studies at Universidad de Buenos Aires in her home country Argentina, followed by PhD studies at Johns Hopkins School of Medicine in Baltimore (USA). After her post-doctoral work at Columbia University in New York (USA), Dr. Cochella took the next step in her outstanding academic career and became a group leader at the Research Institute of Molecular Pathology (IMP) in Vienna (Austria), in January 2013.

About the IMP
The renowned Research Institute of Molecular Pathology (IMP) in Vienna is a basic biomedical research institute largely sponsored by Boehringer Ingelheim. With over 200 scientists from 37 nations, the IMP is committed to scientific discovery of fundamental molecular and cellular mechanisms underlying complex biological phenomena. Research areas include cell and molecular biology, neurobiology, disease mechanisms and computational biology.

Contact
Dr. Benedikt Mandl
IMP - Communications
Tel. +43 1 79730 3627
benedikt.mandl@imp.ac.at

www.imp.ac.at

Weitere Informationen:

http://www.imp.ac.at/pressefoto-Cochella

Dr. Heidemarie Hurtl | idw - Informationsdienst Wissenschaft

Further reports about: IMP Molekulare Pathologie carbon dioxide cell types elegans genes miRNAs neurons

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>