Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NO2 Air Pollution Increases Allergenicity in Ragweed Pollen

17.08.2015

Pollen of the common ragweed (Ambrosia artemisiifolia) has higher concentrations of allergen when the plant is exposed to NO2 exhaust gases, according to findings of scientists of Helmholtz Zentrum München. In addition, the study published in the journal ‘Plant, Cell & Environment’ indicates the presence of a possible new allergen in the plant.

Together with the Research Unit Protein Science and the Institute for Environmental Medicine of Technische Universität München as well as the research consortium UNIKA-T and the Christine Kühne – Center for Allergy Research and Education, researchers of the Institute of Biochemical Plant Pathology (BIOP) studied how nitrogen oxides affect the pollen of the plant.


Air pollution increases allergenicity of Ambrosia pollen (yellow)

Source: Helmholtz Zentrum München (HMGU)

Specifically, they fumigated the plants with various concentrations of NO2, which e.g. is generated during combustion processes of fuel. “Our data showed that the stress on the plant caused by NO2 modulated the protein composition of the pollen,” said first author Dr. Feng Zhao.

“Different isoforms of the known allergen Amb a 1 were significantly elevated.” In addition, the scientists observed that the pollen from NO2 treated plants have a significantly increased binding capacity to specific IgE antibodies* of individuals allergic to Ambrosia. This is often the beginning of an allergic reaction in humans.

Previously unknown allergen in Ambrosia

The plant researchers made another striking discovery in the pollen of the fumigated plants: During their investigations they identified a protein that was present in particular when NO2 levels were elevated. This protein was not previously known to be an allergen in Ambrosia, and it has a strong similarity with a protein from a rubber tree. In this context, it was previously described as an allergen whose effect was also known in fungi and other plants. Further experiments related to this topic are currently being planned.

Stress makes pollen aggressive

“Ultimately, it can be expected that the already aggressive Ambrosia pollen will become even more allergenic in the future due to air pollution,” said study leader Dr. Ulrike Frank, summarizing the results. She and her team at BIOP have long been conducting research on the plant, which probably once came to Europe in imported birdseed. Now it is widely dispersed here due to climate change. Ragweed pollen is very aggressive; in the U.S. it is now the main cause of hay fever and other allergies. Since Ambrosia does not bloom until late summer, it thus lengthens the “season” for allergy sufferers.

“After studies have already shown that Ambrosia growing along highways is clearly more allergenic than Ambrosia plants growing away from road traffic, we could provide a reason for this,” said Frank. “Since in nature and along roads hundreds of parameters could play a role, until now the situation was not entirely clear.” In future studies in collaboration with UNIKA-T and the Christine Kühne – Center for Allergy Research and Education, the scientists want to show that pollen only treated with NO2 can also elicit stronger in vivo reactions.


Further Information

Background:
* IgE (Immunglobulin E) is the term referring to a class of antibodies which are considered to be the main cause of allergic reactions in the body. If an IgE molecule binds to an allergen, it can induce so-called mast cells to release histamine, which ultimately triggers the allergic reaction. The actual task of IgE is the defense against parasites and worms.

Original Publication:
Zhao, F. et al. (2015). Common ragweed (Ambrosia artemisiifolia L.): Allergenicity and molecular characterisation of pollen after plant exposure to elevated NO2. Plant, Cell & Environment, DOI: 10.1111/pce.12601

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The focal point of the research work carried out by the Institute of Biochemical Plant Pathology is the examination of molecular mechanisms that plants use to adapt to their environment. These include genetic and biochemical processes which control the growth, physiological state and defence mechanisms of the plants. The aim of the research is to better understand the fundamental principles and mechanisms of the interaction between plants and their environment and to develop sustainable strategies for the cultivation and use of plants to protect natural resources.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Ulrike Frank, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Biochemical Plant Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49 89 3187 2422 - E-mail: ulrike.frank@helmholtz-muenchen.de

Weitere Informationen:

http://www.ncbi.nlm.nih.gov/pubmed/26177592 - Link to the Publication
http://www.helmholtz-muenchen.de/en/news/press-releases/2015/index.html - Press releases Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/biop - Institute of Biochemical Plant Pathology

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: Air Pollution Ambrosia Environmental Health NO2 Pathology Pollution

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>