Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIDA researchers confirm important brain reward pathway

13.11.2014

NIH study in rodents identifies a pathway that starts with glutamate and ends with activation of dopamine reward system

Details of the role of glutamate, the brain’s excitatory chemical, in a drug reward pathway have been identified for the first time.


Partial view of labelled neurons in reward circuitry that starts in dorsal raphe

(pictured – ventral tegmental area)

Image courtesy Dr. Marisela Morales, NIDA IRP

This discovery in rodents - published today in Nature Communications - shows that stimulation of glutamate neurons in a specific brain region (the dorsal raphe nucleus) leads to activation of dopamine-containing neurons in the brain’s reward circuit (dopamine reward system).

Dopamine is a neurotransmitter present in regions of the brain that regulate movement, emotion, motivation, and feelings of pleasure. Glutamate is a neurotransmitter whose receptors are important for neural communication, memory formation, and learning. The research was conducted at the Intramural Research Program (IRP) of the National Institute on Drug Abuse (NIDA), which is part of the National Institutes of Health.

The research focused on the dorsal raphe nucleus, which has long been a brain region of interest to drug abuse researchers, since nerve cells in this area connect to part of the dopamine reward system. Many of the pathways are rich in serotonin, a neurotransmitter linked to mood regulation.

Even though electrical stimulation of the dorsal raphe nucleus promotes reward-related behaviors, drugs that increase serotonin have low abuse potential. As a result, this region of the brain has always presented a seeming contradiction, since it is involved in drug reward but is also abundant in serotonin - a chemical not known for a role in drug reinforcement. This has led researchers to theorize that another neurotransmitter may be responsible for the role that the dorsal raphe nucleus plays in reward.

“We now have strong evidence of a reward pathway that starts with stimulation of glutamate neurons in the dorsal raphe nucleus and ends in activation of the dopamine reward system,” said NIDA Director Dr. Nora D. Volkow. “These findings help us better understand the brain’s reward circuitry and opens up new avenues of research into the neurobiology of drug addiction.”

In these rodent models, researchers used special tracers and labelling compounds to confirm that this circuit in the reward pathway begins with glutamate cells in the dorsal raphe nucleus that connect to dopamine cells in the ventral tegmental area, which in turn travel to the nucleus accumbens, a brain structure linked to motivation, pleasure, and reward.

After verifying the pathway, investigators used optogenetic techniques (using light to control activity of modified cells) and chemical blockers to confirm that glutamate, not serotonin, is responsible for activating this reward circuitry.

“This glutamatergic pathway is the first fully characterized link between electrically stimulated reward circuitry and the dopamine system on which it depends,” said Dr. Marisela Morales, NIDA IRP scientist and senior author on the paper. “The discovery of this specific brain pathway opens new avenues to examine its participation in a variety of disorders related to motivation.”

The paper by Qi et al. can be found at www.nature.com/ncomms/index.html . For similar research currently being conducted by NIDA IRP in this area, go to: http://irp.drugabuse.gov/cnrb.php#Anchor-Anatomy-48213 .


Contact:
NIDA Press Office
301-443-6245
media@nida.nih.gov

About the National Institute on Drug Abuse (NIDA): NIDA is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov. To order publications in English or Spanish, call NIDA's new DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at drugpubs.drugabuse.gov. NIDA's media guide can be found at www.drugabuse.gov/publications/media-guide, and its new easy-to-read website can be found at www.easyread.drugabuse.gov .

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov .

NIH. . .Turning Discovery Into Health®

NIDA Press Office | EurekAlert!
Further information:
http://www.drugabuse.gov/news-events/news-releases/2014/11/nida-researchers-confirm-important-brain-reward-pathway

Further reports about: Abuse Department Drug Drug Abuse IRP NIH brain region circuitry dopamine glutamate medical research neurons pathway responsible

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>