Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified enzyme may be the culprit in Pierce's disease grapevine damage

12.01.2016

UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce's disease, which annually costs California's grape and wine industries more than $100 million.

e researchers hope that the discovery, which runs counter to existing theories, will lead to new diagnostics and potential treatments for Pierce's disease. Their findings will be reported Tuesday, Jan. 12, in Scientific Reports, an online journal of the Nature Publishing Group, at http://www.nature.com/articles/srep18598.


An enzyme appears to enable Xyllela fastidiosa bacteria to infect grapevines with Pierce's disease, causing serious leaf damage as pictured here.

Credit: Aaron Jacobson/UC Davis

"With a bacterial disease -- much like cancer -- if you understand how the virulent form spreads, you can better control or remove it, " said Abhaya Dandekar, a professor of plant sciences and senior author on the study.

"We anticipate that this discovery could open new ways to think about dealing with Pierce's disease and highlight other areas of immune response, in general, that haven't yet been considered," he said.

About Pierce's disease:

Pierce's disease, first identified in the 1890s, is caused by the bacterium Xylella fastidiosa and is characterized by yellowed and browning leaves that eventually drop from the vine. The disease is transmitted from vine to vine by small, winged insects called sharpshooters.

Pierce's disease is established in Northern California, where it is transmitted by the blue-green sharpshooter, which lives near rivers and streams. The disease became a serious threat to California agriculture in 1996 when the glassywinged sharpshooter -- another Pierce's disease carrier native to the Southwest -- was discovered in the Temecula Valley of Southern California.

How infection progresses:

It's been known for a number of years that when Xyllela fastidiosa invades a grapevine, it produces a biofilm or gel in the xylem -- the vascular tissue that transports water and some nutrients throughout the vine.

Scientists have theorized that this biofilm damages the vine by clogging up the xylem, preventing the flow of water to the leaves. That theory seemed to explain the yellowing of the leaf edges and eventual death of the leaf tissue.

But not all of the evidence stacked up to fit that theory, Dandekar said. For example a heavy accumulation of Xyllela fastidiosa in grapevine leaves was not always accompanied by severe disease symptoms in leaves. And, in some infected grapevines as well as other host plants, the leaves showed severe symptoms but the xylem had very little blockage.

So Dandekar and colleagues set out to investigate an alternative mechanism by which Xyllela fastidiosa might be wreaking havoc with the vine's physiology.

Secrets of the "secretome":

The research team began by analyzing the bacteria's secretome -- the entire collection of enzymes and other proteins secreted by a disease-causing agent like Xyllela fastidiosa during the infection process. Such secreted proteins are known to play key roles in triggering many plant diseases.

The resulting data indicated that an enzyme, which the researchers named LesA, was quite abundant during Xyllela fastidiosa infections and shared characteristics with similar enzymes known to be capable of breaking down plant cell walls.

The researchers went on to confirm their suspicions by demonstrating that a mutant strain of Xyllela fastidiosa bacteria -- with a specific gene knocked out, or inactivated -- lacked the ability to cause infection in grapevines.

"The LesA enzyme has the ability to move through cell membranes, equipping the Xyllela fastidiosa bacteria to invade the grapevine and to live in its xylem tissues, where it feeds on fatlike compounds called lipids," Dandekar says.

In this way, the LesA enzyme triggers the process that causes the typical Pierce's disease leaf damage -- a process completely unrelated to the xylem blockage and water stress that had previously been thought to cause the symptomatic leaf damage.

###

The research for the newly published study was conducted by Rafael Nascimiento and Hossein Gouran, both graduate students in Dandekar's laboratory. Dandekar said that his research team plans to move forward with Pierce's disease research in hopes of developing ways to counteract the disease.

Funding for the newly published study was provided by the Pierce's Disease Board of the California Department of Food and Agriculture.

Media contacts:

Abhaya Dandekar, Plant Sciences, (530) 752-7784, amdandekar@ucdavis.edu

Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

http://www.ucdavis.edu 

Patricia Bailey | EurekAlert!

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>