Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified enzyme may be the culprit in Pierce's disease grapevine damage

12.01.2016

UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce's disease, which annually costs California's grape and wine industries more than $100 million.

e researchers hope that the discovery, which runs counter to existing theories, will lead to new diagnostics and potential treatments for Pierce's disease. Their findings will be reported Tuesday, Jan. 12, in Scientific Reports, an online journal of the Nature Publishing Group, at http://www.nature.com/articles/srep18598.


An enzyme appears to enable Xyllela fastidiosa bacteria to infect grapevines with Pierce's disease, causing serious leaf damage as pictured here.

Credit: Aaron Jacobson/UC Davis

"With a bacterial disease -- much like cancer -- if you understand how the virulent form spreads, you can better control or remove it, " said Abhaya Dandekar, a professor of plant sciences and senior author on the study.

"We anticipate that this discovery could open new ways to think about dealing with Pierce's disease and highlight other areas of immune response, in general, that haven't yet been considered," he said.

About Pierce's disease:

Pierce's disease, first identified in the 1890s, is caused by the bacterium Xylella fastidiosa and is characterized by yellowed and browning leaves that eventually drop from the vine. The disease is transmitted from vine to vine by small, winged insects called sharpshooters.

Pierce's disease is established in Northern California, where it is transmitted by the blue-green sharpshooter, which lives near rivers and streams. The disease became a serious threat to California agriculture in 1996 when the glassywinged sharpshooter -- another Pierce's disease carrier native to the Southwest -- was discovered in the Temecula Valley of Southern California.

How infection progresses:

It's been known for a number of years that when Xyllela fastidiosa invades a grapevine, it produces a biofilm or gel in the xylem -- the vascular tissue that transports water and some nutrients throughout the vine.

Scientists have theorized that this biofilm damages the vine by clogging up the xylem, preventing the flow of water to the leaves. That theory seemed to explain the yellowing of the leaf edges and eventual death of the leaf tissue.

But not all of the evidence stacked up to fit that theory, Dandekar said. For example a heavy accumulation of Xyllela fastidiosa in grapevine leaves was not always accompanied by severe disease symptoms in leaves. And, in some infected grapevines as well as other host plants, the leaves showed severe symptoms but the xylem had very little blockage.

So Dandekar and colleagues set out to investigate an alternative mechanism by which Xyllela fastidiosa might be wreaking havoc with the vine's physiology.

Secrets of the "secretome":

The research team began by analyzing the bacteria's secretome -- the entire collection of enzymes and other proteins secreted by a disease-causing agent like Xyllela fastidiosa during the infection process. Such secreted proteins are known to play key roles in triggering many plant diseases.

The resulting data indicated that an enzyme, which the researchers named LesA, was quite abundant during Xyllela fastidiosa infections and shared characteristics with similar enzymes known to be capable of breaking down plant cell walls.

The researchers went on to confirm their suspicions by demonstrating that a mutant strain of Xyllela fastidiosa bacteria -- with a specific gene knocked out, or inactivated -- lacked the ability to cause infection in grapevines.

"The LesA enzyme has the ability to move through cell membranes, equipping the Xyllela fastidiosa bacteria to invade the grapevine and to live in its xylem tissues, where it feeds on fatlike compounds called lipids," Dandekar says.

In this way, the LesA enzyme triggers the process that causes the typical Pierce's disease leaf damage -- a process completely unrelated to the xylem blockage and water stress that had previously been thought to cause the symptomatic leaf damage.

###

The research for the newly published study was conducted by Rafael Nascimiento and Hossein Gouran, both graduate students in Dandekar's laboratory. Dandekar said that his research team plans to move forward with Pierce's disease research in hopes of developing ways to counteract the disease.

Funding for the newly published study was provided by the Pierce's Disease Board of the California Department of Food and Agriculture.

Media contacts:

Abhaya Dandekar, Plant Sciences, (530) 752-7784, amdandekar@ucdavis.edu

Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

http://www.ucdavis.edu 

Patricia Bailey | EurekAlert!

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>