Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified enzyme may be the culprit in Pierce's disease grapevine damage

12.01.2016

UC Davis plant scientists have identified an enzyme that appears to play a key role in the insect-transmitted bacterial infection of grapevines with Pierce's disease, which annually costs California's grape and wine industries more than $100 million.

e researchers hope that the discovery, which runs counter to existing theories, will lead to new diagnostics and potential treatments for Pierce's disease. Their findings will be reported Tuesday, Jan. 12, in Scientific Reports, an online journal of the Nature Publishing Group, at http://www.nature.com/articles/srep18598.


An enzyme appears to enable Xyllela fastidiosa bacteria to infect grapevines with Pierce's disease, causing serious leaf damage as pictured here.

Credit: Aaron Jacobson/UC Davis

"With a bacterial disease -- much like cancer -- if you understand how the virulent form spreads, you can better control or remove it, " said Abhaya Dandekar, a professor of plant sciences and senior author on the study.

"We anticipate that this discovery could open new ways to think about dealing with Pierce's disease and highlight other areas of immune response, in general, that haven't yet been considered," he said.

About Pierce's disease:

Pierce's disease, first identified in the 1890s, is caused by the bacterium Xylella fastidiosa and is characterized by yellowed and browning leaves that eventually drop from the vine. The disease is transmitted from vine to vine by small, winged insects called sharpshooters.

Pierce's disease is established in Northern California, where it is transmitted by the blue-green sharpshooter, which lives near rivers and streams. The disease became a serious threat to California agriculture in 1996 when the glassywinged sharpshooter -- another Pierce's disease carrier native to the Southwest -- was discovered in the Temecula Valley of Southern California.

How infection progresses:

It's been known for a number of years that when Xyllela fastidiosa invades a grapevine, it produces a biofilm or gel in the xylem -- the vascular tissue that transports water and some nutrients throughout the vine.

Scientists have theorized that this biofilm damages the vine by clogging up the xylem, preventing the flow of water to the leaves. That theory seemed to explain the yellowing of the leaf edges and eventual death of the leaf tissue.

But not all of the evidence stacked up to fit that theory, Dandekar said. For example a heavy accumulation of Xyllela fastidiosa in grapevine leaves was not always accompanied by severe disease symptoms in leaves. And, in some infected grapevines as well as other host plants, the leaves showed severe symptoms but the xylem had very little blockage.

So Dandekar and colleagues set out to investigate an alternative mechanism by which Xyllela fastidiosa might be wreaking havoc with the vine's physiology.

Secrets of the "secretome":

The research team began by analyzing the bacteria's secretome -- the entire collection of enzymes and other proteins secreted by a disease-causing agent like Xyllela fastidiosa during the infection process. Such secreted proteins are known to play key roles in triggering many plant diseases.

The resulting data indicated that an enzyme, which the researchers named LesA, was quite abundant during Xyllela fastidiosa infections and shared characteristics with similar enzymes known to be capable of breaking down plant cell walls.

The researchers went on to confirm their suspicions by demonstrating that a mutant strain of Xyllela fastidiosa bacteria -- with a specific gene knocked out, or inactivated -- lacked the ability to cause infection in grapevines.

"The LesA enzyme has the ability to move through cell membranes, equipping the Xyllela fastidiosa bacteria to invade the grapevine and to live in its xylem tissues, where it feeds on fatlike compounds called lipids," Dandekar says.

In this way, the LesA enzyme triggers the process that causes the typical Pierce's disease leaf damage -- a process completely unrelated to the xylem blockage and water stress that had previously been thought to cause the symptomatic leaf damage.

###

The research for the newly published study was conducted by Rafael Nascimiento and Hossein Gouran, both graduate students in Dandekar's laboratory. Dandekar said that his research team plans to move forward with Pierce's disease research in hopes of developing ways to counteract the disease.

Funding for the newly published study was provided by the Pierce's Disease Board of the California Department of Food and Agriculture.

Media contacts:

Abhaya Dandekar, Plant Sciences, (530) 752-7784, amdandekar@ucdavis.edu

Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

http://www.ucdavis.edu 

Patricia Bailey | EurekAlert!

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>