Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered metabolism certifies evolutionary advantage for yeast

24.09.2015

Assumptions and models used in the last 30 years are false

Yeast is being used by mankind for longer time than any other microorganism. Bread, beer, wine - all of these could not be produced without Saccharomyces cerevisiae (baker's yeast) and other yeast species.


Electronmicroscopy of Pichia pastoris cells: normal yeast cells grown on glucose on the left. Clearly visible peroxisomes (Px), the organelles responsible for assimilation of methanol into cellular biomass on the right.

Credit: acib/University of Graz

Over the last decades yeast has become indispensable for industrial biotechnology as a reliable cell factory. Valuable products ranging from enzymes to active pharmaceutical ingredients are industrially produced using yeast, mostly by a species called Pichia pastoris that is particularly productive.

Because of its long and varied use, yeast is one of the best studied organisms. Besides its industrial application Pichia pastoris is also used by scientists as a model organism for studying cell structures. Everything seemed familiar - until this year.

Researchers of the Austrian Centre of Industrial Biotechnology (acib) and the University of Natural Resources and Life Sciences Vienna (BOKU) have elucidated a new pathway that makes the yeast Pichia pastoris unique. "We were able to show that the assumptions and models that have been used in the last 30 years are not right", explains Prof. Diethard Mattanovich (BOKU and head of the research area "Systems Biology & Microbial Cell Engineering" at acib).

The new pathway explains the utilization of methanol as "feed". Yeasts such as Pichia pastoris belong to the rare kind of microorganisms that are able to utilize this simple alcohol as nutrient. Mattanovich: "The cells use that option, for example, when they grow naturally in the sap of trees, where methanol is present."

The researchers around project leader Dr. Brigitte Gasser discovered amazing similarities with plants. These use carbon dioxide (CO2) as a nutrient and recycle the greenhouse gas in cell organelles called chloroplasts. Eventually CO2 is converted to biomass. Pichia works similarly: It converts methanol, which consists of one carbon atom like CO2, in a cell organelle called peroxisome.

The decisive role in both processes is the formation of chemical bonds between carbon atoms and the rearrangement into sugar molecules and other substances, which are necessary for the synthesis of biomass. "So far we did not know where these rearrangements are performed in the cells, and which genes control them", says Brigitte Gasser.

Just as little was known about the genetic encoding of this metabolism. Most cells have one gene available per protein and metabolic step. Pichia is evolutionarily on the safe side. All genes for methanol manipulation are duplicated, as Mattanovich and Gasser have discovered together with 13 scientists who were involved in this research project.

The genes do not only have an additional genetic information so that the appropriate reactions are located to the peroxisome. They are active only when methanol is present as a nutrient source.

For these findings, the researchers have re-evaluated the entire data, which have emerged in the recent years while improving Pichia pastoris biotechnologically at acib and BOKU. "The interpretation of our systems biology data revolutionized the understanding of cell biology", says Brigitte Gasser, delighted about the new knowledge of life processes on earth. The work was recently published in the prestigious journal BMC Biology. The results demonstrate the leading role of Vienna researchers when it comes to the biotech yeast Pichia pastoris.

###

Systems-level organization of yeast methylotrophic lifestyle, Rußmayer et al. 2015. BMC Biology 13:80, http://www.biomedcentral.com/1741-7007/13/80

About acib

The Austrian Centre of Industrial Biotechnology (ACIB) is an international research centre for industrial biotechnology with locations in Vienna, Graz, Innsbruck, Tulln, Hamburg and Bielefeld (D), Pavia (I), Barcelona (E) and Rzeszow (P). acib sees itself as a scientific and industrial network of 130+ partners, including Biomin, Biocrates, Boehringer Ingelheim RCV, Lonza, Sandoz, VTU Technology.

At acib, 200+ employees work on more than 70 research projects with the final goal to replace conventional industrial processes and products by more environmentally friendly and more economical approaches.

acib is owned by the University of Natural Resources and Life Sciences, Graz University of Technology, the Universities of Innsbruck and Graz and the Styrian Joanneum Research. acib is financed by industrial and public contributions. The latter come from the Austrian Research Promotion Agency of the Republic of Austria (FFG), Standortagentur Tirol, Styrian Business Promotion Agency (SFG), the province of Lower Austria and the Vienna Business Agency.

Contact

Dr. Brigitte Gasser, acib/BOKU, +43 1 47654 6813, brigitte.gasser@boku.ac.at

Prof. Diethard Mattanovich, acib/BOKU, +43 1 47654 6569, diethard.mattanovich@boku.ac.at

DI Thomas Stanzer MA, public relations/acib GmbH, +43 316 873 9312, thomas.stanzer@acib.at

Diethard Mattanovich | EurekAlert!

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>