Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way out: Researchers show how stem cells exit bloodstream

29.06.2016

Researchers at North Carolina State University have discovered that therapeutic stem cells exit the bloodstream in a different manner than was previously thought. This process, dubbed angiopellosis by the researchers, has implications for improving our understanding of not only intravenous stem cell therapies, but also metastatic cancers.

When white blood cells need to get to the site of an infection, they can exit the bloodstream via a process called diapedesis. In diapedesis, the white blood cell changes its shape in order to squeeze between or through the epithelial cells that form the walls of the blood vessel.


A stem cell exits the bloodstream through angiopellosis.

Credit: Alice MacGregor Harvey, NC State University

Diapedesis is a well-understood process, and researchers believed that other types of cells, like therapeutic stem cells or even metastatic cancer cells, exited blood vessels in a similar way - with the cells pushing or squeezing themselves out.

But a group of researchers led by Ke Cheng, associate professor of molecular biomedical sciences at NC State with a joint appointment in the NC State/UNC-Chapel Hill Department of Biomedical Engineering, found that these stem cells behaved differently.

Therapeutic stem cells share the same ability to exit the bloodstream and target particular tissues that white blood cells do. But the precise way that they did so was not well understood, so Cheng and his team utilized a zebrafish model to study the process.

The genetically modified zebrafish embryos were transparent and had fluorescently marked green blood vessels. Researchers injected the embryos with white blood cells and cardiac stem cells from humans, rats and dogs. These cells had all been marked with a red fluorescent protein.

Through time-lapse three-dimensional light sheet microscopic imaging, Cheng and his team could trace the progress of these cells as they left the blood vessel. The white blood cells exited via diapedesis, as expected. When stem cells exited the blood vessel, however, the endothelial cells lining the vessel actively expelled them. Membranes surrounding the endothelial cells on either side of the stem cell stretched themselves around the stem cell, then met in the middle to push the stem cell out of the vessel.

"When you're talking about diapedesis, the white blood cell is active because it changes its shape in order to exit. The endothelial cells in the blood vessel are passive," Cheng says. "But when we looked at therapeutic stem cells, we found the opposite was true - the stem cells were passive, and the endothelial cells not only changed their shape in order to surround the stem cell, they actually pushed the stem cells out of the blood vessel. We've named this process angiopellosis, and it represents an alternative way for cells to leave blood vessels."

The researchers found two other key differences between angiopellosis and diapedesis: one, that angiopellosis takes hours, rather than minutes, to occur; and two, that angiopellosis allows more than one cell to exit at a time.

"Angiopellosis is really a group ticket for cells to get out of blood vessels," Cheng says. "We observed clusters of cells passing through in this way. Obviously, this leads us to questions about whether other types of cells, like metastatic cancer cells, may be using this more effective way to exit the bloodstream, and what we may need to do to stop them."

###

The research is published in Stem Cells. Tyler Allen, a graduate student in the comparative biomedical sciences program, is the first author of the paper. The research was supported by the National Institutes of Health and the American Heart Association.

-peake-

Note to editors: An abstract of the paper follows

"Angiopellosis as an alternative mechanism of cell extravasation"

DOI: 10.1002/stem.2451

Authors: Tyler Allen, Jhon Cores, Adam Vandergriff, Ke Cheng, NC State Department of Molecular Biomedical Sciences and joint Department of Biomedical Engineering, NC State and UNC-Chapel Hill; David Gracieux, Maliha Talib, Debra Tokarz, M. Taylor Hensley, James B.M. de Andrade, Phuong-Uyen Dinh, Jeffrey Yoder, North Carolina State University: Junnan Tang, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China

Published: Online in Stem Cells

Abstract:

Stem cells possess the ability to home in and travel to damaged tissue when injected intravenously. For the cells to exert their therapeutic effect, they must cross the blood vessel wall and enter the surrounding tissues. The mechanism of extravasation injected stem cells employ for exit has yet to be characterized. Using intravital microscopy and a transgenic zebrafish line tg(Fli1a:egpf) with GFP-expressing vasculature, we documented the detailed extravasation processes in vivo for injected stem cells in comparison to white blood cells (WBCs). While WBCs left the blood vessels by the standard diapedesis process, injected cardiac and mesenchymal stem cells underwent a distinct method of extravasation that was markedly different from diapedesis. Here, the vascular wall undergoes an extensive remodeling to allow the cell to exit the lumen, while the injected cell remains distinctively passive in activity. We termed this process Angio-pello-sis, which represents an alternative mechanism of cell extravasation to the prevailing theory of diapedesis.

Media Contact

Tracey Peake
tracey_peake@ncsu.edu
919-515-6142

 @NCStateNews

http://www.ncsu.edu 

Tracey Peake | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>