Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Views of Enzyme Structures Offer Insights Into Metabolism of Cholesterol, Other Lipids

02.03.2015

With the aid of X-ray crystallography, researchers at the University of Michigan have revealed the structures of two closely related enzymes that play essential roles in the body's ability to metabolize excess lipids, including cholesterol.

The findings are an important step toward understanding and being able to therapeutically target disorders and drug side effects that cause lipids, including cholesterol, to build up in the body—leading to heart and kidney failure and other problems.

Investigators in John Tesmer's lab at the U-M Life Sciences Institute obtained a high-resolution picture of the atomic structure of lysosomal phospholipase A2, which is known as LPLA2, and a lower-resolution image of the structure of lecithin-cholesterol acyltransferase, which is known as LCAT. The enzymes share many structural similarities but perform different functions within the body.

Being able to see the structures for the first time gives scientists a better understanding of the role the two enzymes play in helping the body to break down and remove cholesterol and other lipids. The findings are scheduled for publication in Nature Communications on March 2.

In healthy people, LCAT facilitates the removal of cholesterol from the body. But LCAT doesn't function properly in people with genetic disorders that cause plaques to build up in the blood vessels of the heart and kidneys, and in the corneas.

Meanwhile, LPLA2 helps cells break down excess lipids. Side effects of certain drugs lead to inhibition of LPLA2, which in turn leads to a buildup of lipids within cells. Recent studies suggest LPLA2 may also play a role in lupus, a chronic autoimmune disease.

"The structures reveal how the catalytic machinery of these enzymes is organized and how they interact with membranes and HDL particles," said the study's first author, Alisa Glukhova, who received a doctorate from U-M's Program in Chemical Biology last fall and who is now working as a research fellow at Monash University in Melbourne, Australia.

The high-resolution snapshot of LPLA2 can also help illuminate the impact of mutations within the enzyme.

"By knowing the architecture of these key enzymes, we can further understand how more than 55 known mutations of LCAT lead to dysfunction and disease," said study senior author John Tesmer, a research professor at the Life Sciences Institute, where his laboratory is located, and a professor of biological chemistry and pharmacology in the U-M Medical School. "These structures also suggest new approaches to develop better biotherapeutics to treat LCAT deficiency."

The researchers are now working on obtaining a higher resolution image of the LCAT structure to get a more refined understanding of how it functions.

Co-authors on the paper include Vania Hinkovska-Galcheva, Robert Kelly and James Shayman of the Department of Internal Medicine in the U-M Medical School and Akira Abe of the Department of Internal Medicine in the U-M Medical School and Sapporo Medical University in Japan.

Support for the research was provided by grants from the National Institutes of Health, an American Heart Association Predoctoral Fellowship, a Rackham Graduate Student Research Grant and a Merit Review Award from the Department of Veterans Affairs.

The Life Sciences Institute is a nucleus of biomedical research at U-M. LSI scientists use a range of tools and model organisms to explore the most fundamental biological and chemical processes of life. The institute houses an academic early drug discovery center, a cryo-electron microscopy laboratory, a comprehensive protein production and crystallography facility and a stem-cell biology center.

John Tesmer's lab

Contact Information
Ian Demsky, 734-647-9837, idemsky@umich.edu

Ian Demsky | newswise
Further information:
http://www.umich.edu

Further reports about: Internal Medicine Life Lipids Medical Metabolism cholesterol enzymes structure structures

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>