Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New type of rare brittle-bone disease discovered


Researchers from the University of Zurich and University Children’s Hospital Zurich have dis-covered the first X-chromosome-inherited type of the congenital disease osteogenesis imperfecta, also known as brittle-bone disease. The new discovery improves the genetic diagnosis of the disease and paves the way to possible improved treatment options for patients.

Between 300 and 400 people in Switzerland and around half a million worldwide suffer from brittle-bone disease, which causes their bones to break like glass. Not only is their bone formation insuffi-cient; other body tissues containing connective tissue are also affected.

People with osteogenesis imperfecta often break their bones (image: thinkstock)

Cecilia Giunta and Marianne Rohrbach, both researchers from the Children’s Research Center at the University Children’s Hospital Zurich, their teams and colleagues from the USA and Thailand have now detected a new type of brit-tle-bone disease, identifying two families with a total of eight patients in all.

The patients suffer from heightened bone fragility, bone deformities and stunted growth. In both families, this new form of oste-ogenesis imperfecta was caused by two different mutations of the same gene (MBTPS2) in the X chromosome. The disease is inherited in an X-chromosome-recessive manner and affects men and boys as only they carry a copy of the X chromosome.

Simple test in the urine

“Exactly how common the newly discovered disease is remains unclear,” says Cecilia Giunta. “That said, it’s easy to identify other patients, as we demonstrated that the disease can be diagnosed with a simple measurement of biomarkers in the urine.”

These biomarkers indicate changes in the crosslink-ing between the structural proteins in the bone. MBTPS2 encodes a protease, i.e. a protein, which is able to cut and therefore activate other proteins – so-called transcription factors. These activated pro-teins bind to the DNA and regulate genes involved in the bone and sterol metabolism and the regula-tion of cell stress.

This was primarily shown in zebra fish in 2003. Shortly afterwards, researchers dis-covered that IFAP syndrome, a group of rare dermatological diseases in humans, is caused by muta-tions in MBTPS2.

“Surprisingly, mutations in the gene MBTPS2 also cause a completely different disease, namely oste-ogenesis imperfecta,” explains Marianne Rohrbach. The culprit is a change in the bone metabolism, which no longer seems to be impaired in the case of dermatological diseases.

Exactly how and why mutations can trigger two completely different diseases in the same gene remains unclear. The team headed by Cecilia Giunta and Marianne Rohrbach are now focusing their research on finding the an-swer. The scientists hope to gain new insights into bone developments and sterol metabolism, which could one day mean improved treatment options for patients.

Uschi Lindert, Wayne Cabral, Surasawadee Ausavarat, Siraprapa Tongkobpetch, Katja Ludin, Aileen Barnes, Patra Yeetong, MaryAnn Weis, Birgit Krabichler, Chalurmpon Srichomthong, Elena Makaree-va, Andreas Janecke, Sergey Leikin, Benno Röthlisberger, Marianne Rohrbach, Ingo Kennerknecht, David Eyre, Kanya Suphapeetiporn, Cecilia Giunta, Joan Marini, and Vorasuk Shotelersuk. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nature Communications. DOI: 10.1038/NCOMMS11920

Dr. sc. nat. Cecilia Giunta
Division of Metabolic Diseases,
Children’s Research Center, Children’s Hospital Zurich
Phone: +41 266 73 10

PD, Dr. med. et phil. nat. Marianne Rohrbach
Division of Metabolic Diseases,
Children’s Research Center, Children’s Hospital Zurich
Phone: +41 266 73 10

Beat Müller | Universität Zürich
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>