Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New type of rare brittle-bone disease discovered

06.07.2016

Researchers from the University of Zurich and University Children’s Hospital Zurich have dis-covered the first X-chromosome-inherited type of the congenital disease osteogenesis imperfecta, also known as brittle-bone disease. The new discovery improves the genetic diagnosis of the disease and paves the way to possible improved treatment options for patients.

Between 300 and 400 people in Switzerland and around half a million worldwide suffer from brittle-bone disease, which causes their bones to break like glass. Not only is their bone formation insuffi-cient; other body tissues containing connective tissue are also affected.


People with osteogenesis imperfecta often break their bones (image: thinkstock)

Cecilia Giunta and Marianne Rohrbach, both researchers from the Children’s Research Center at the University Children’s Hospital Zurich, their teams and colleagues from the USA and Thailand have now detected a new type of brit-tle-bone disease, identifying two families with a total of eight patients in all.

The patients suffer from heightened bone fragility, bone deformities and stunted growth. In both families, this new form of oste-ogenesis imperfecta was caused by two different mutations of the same gene (MBTPS2) in the X chromosome. The disease is inherited in an X-chromosome-recessive manner and affects men and boys as only they carry a copy of the X chromosome.

Simple test in the urine

“Exactly how common the newly discovered disease is remains unclear,” says Cecilia Giunta. “That said, it’s easy to identify other patients, as we demonstrated that the disease can be diagnosed with a simple measurement of biomarkers in the urine.”

These biomarkers indicate changes in the crosslink-ing between the structural proteins in the bone. MBTPS2 encodes a protease, i.e. a protein, which is able to cut and therefore activate other proteins – so-called transcription factors. These activated pro-teins bind to the DNA and regulate genes involved in the bone and sterol metabolism and the regula-tion of cell stress.

This was primarily shown in zebra fish in 2003. Shortly afterwards, researchers dis-covered that IFAP syndrome, a group of rare dermatological diseases in humans, is caused by muta-tions in MBTPS2.

“Surprisingly, mutations in the gene MBTPS2 also cause a completely different disease, namely oste-ogenesis imperfecta,” explains Marianne Rohrbach. The culprit is a change in the bone metabolism, which no longer seems to be impaired in the case of dermatological diseases.

Exactly how and why mutations can trigger two completely different diseases in the same gene remains unclear. The team headed by Cecilia Giunta and Marianne Rohrbach are now focusing their research on finding the an-swer. The scientists hope to gain new insights into bone developments and sterol metabolism, which could one day mean improved treatment options for patients.

Literature:
Uschi Lindert, Wayne Cabral, Surasawadee Ausavarat, Siraprapa Tongkobpetch, Katja Ludin, Aileen Barnes, Patra Yeetong, MaryAnn Weis, Birgit Krabichler, Chalurmpon Srichomthong, Elena Makaree-va, Andreas Janecke, Sergey Leikin, Benno Röthlisberger, Marianne Rohrbach, Ingo Kennerknecht, David Eyre, Kanya Suphapeetiporn, Cecilia Giunta, Joan Marini, and Vorasuk Shotelersuk. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta. Nature Communications. DOI: 10.1038/NCOMMS11920


Contacts:
Dr. sc. nat. Cecilia Giunta
Division of Metabolic Diseases,
Children’s Research Center, Children’s Hospital Zurich
Phone: +41 266 73 10
E-mail: cecilia.giunta@kispi.uzh.ch

PD, Dr. med. et phil. nat. Marianne Rohrbach
Division of Metabolic Diseases,
Children’s Research Center, Children’s Hospital Zurich
Phone: +41 266 73 10
E-mail: marianne.rohrbach@kispi.uzh.ch

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/

More articles from Life Sciences:

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

nachricht Keeping the excitement under control
18.04.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>