Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Trick Found for How Cells Stay Organized


Unique boundary found for little-known cellular compartment

Fast Facts:

Jenn Wang

As time passes (left to right), RNA granules (green dots) segregate to the posterior of a newly fertilized C. elegans egg. Chromosomes are marked in red.

  • RNA granules are tiny cellular compartments that are not bound by membranes like most other compartments.
  • They were thought to not need a physical boundary, but they do.
  • The boundary is a new type that resembles an irregularly shaped protein cage that revolves around the contents of the granule.

Organization is key to an efficient workplace, and cells are no exception to this rule. New evidence from Johns Hopkins researchers suggests that, in addition to membranes, cells have another way to keep their contents and activities separate: with ribbons of spinning proteins. A summary of their findings appears today in the journal eLife.

Each cell is a busy warehouse of activity. To keep things orderly, protein workers are “assigned” to specific areas of the cell where other workers are collaborating on the same project. Most of the project areas, or organelles, in the cell are cordoned off by flexible membranes that let things in and out on an as-needed basis, but some organelles, like RNA granules, do not seem to have clear boundaries.

RNA granules float throughout the watery space inside the cell and are responsible for transporting, storing and controlling RNA — DNA’s chemical cousin — which holds blueprints for proteins. Until now, researchers thought that the granules didn’t have concrete edges to separate them from the space outside.

“Before, the thinking was that RNA granules were like oil in water,” says Geraldine Seydoux, Ph.D., a Howard Hughes investigator and professor of molecular biology and genetics at the Johns Hopkins University School of Medicine. “Oil molecules create droplets because they are attracted to themselves, and so they are able to separate from surrounding water. Now we know that the separation of RNA granules from their watery surroundings is facilitated by a dynamic envelope that stabilizes them.”

Seydoux and her team worked with Eric Betzig, Ph.D., of Janelia Farm, who uses a state-of-the-art microscope that can detect rapidly moving particles. That microscope was key to detecting the irregularly shaped protein “cages” that surround the granules because they are constantly orbiting. When the researchers identified the proteins that create the cages, they were further surprised to find that the proteins are predicted not to interact with RNA and are rarely folded as most proteins are.

Seydoux says there are many questions left open about the nature of these protein cages and the RNA granules they surround, but “it is quite exciting to have discovered a new way that cells organize their contents.”

Other authors of the report include Jennifer Wang, Jarrett Smith, Helen Schmidt, Dominique Rasoloson, Alexandre Paix, Bramwell Lambrus and Deepika Calidas of the Johns Hopkins University School of Medicine, as well as Bi-Chang Chen of Janelia Farm.

This work was supported by the National Institute of Child Health and Human Development (R01HD37047) and the Howard Hughes Medical Institute.

Citations: eLife, Jan-2015; R01HD37047

Contact Information
Catherine Kolf
Senior Communications Specialist
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>