Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Trick Found for How Cells Stay Organized

16.01.2015

Unique boundary found for little-known cellular compartment

Fast Facts:


Jenn Wang

As time passes (left to right), RNA granules (green dots) segregate to the posterior of a newly fertilized C. elegans egg. Chromosomes are marked in red.

  • RNA granules are tiny cellular compartments that are not bound by membranes like most other compartments.
  • They were thought to not need a physical boundary, but they do.
  • The boundary is a new type that resembles an irregularly shaped protein cage that revolves around the contents of the granule.

Organization is key to an efficient workplace, and cells are no exception to this rule. New evidence from Johns Hopkins researchers suggests that, in addition to membranes, cells have another way to keep their contents and activities separate: with ribbons of spinning proteins. A summary of their findings appears today in the journal eLife.

Each cell is a busy warehouse of activity. To keep things orderly, protein workers are “assigned” to specific areas of the cell where other workers are collaborating on the same project. Most of the project areas, or organelles, in the cell are cordoned off by flexible membranes that let things in and out on an as-needed basis, but some organelles, like RNA granules, do not seem to have clear boundaries.

RNA granules float throughout the watery space inside the cell and are responsible for transporting, storing and controlling RNA — DNA’s chemical cousin — which holds blueprints for proteins. Until now, researchers thought that the granules didn’t have concrete edges to separate them from the space outside.

“Before, the thinking was that RNA granules were like oil in water,” says Geraldine Seydoux, Ph.D., a Howard Hughes investigator and professor of molecular biology and genetics at the Johns Hopkins University School of Medicine. “Oil molecules create droplets because they are attracted to themselves, and so they are able to separate from surrounding water. Now we know that the separation of RNA granules from their watery surroundings is facilitated by a dynamic envelope that stabilizes them.”

Seydoux and her team worked with Eric Betzig, Ph.D., of Janelia Farm, who uses a state-of-the-art microscope that can detect rapidly moving particles. That microscope was key to detecting the irregularly shaped protein “cages” that surround the granules because they are constantly orbiting. When the researchers identified the proteins that create the cages, they were further surprised to find that the proteins are predicted not to interact with RNA and are rarely folded as most proteins are.

Seydoux says there are many questions left open about the nature of these protein cages and the RNA granules they surround, but “it is quite exciting to have discovered a new way that cells organize their contents.”

Other authors of the report include Jennifer Wang, Jarrett Smith, Helen Schmidt, Dominique Rasoloson, Alexandre Paix, Bramwell Lambrus and Deepika Calidas of the Johns Hopkins University School of Medicine, as well as Bi-Chang Chen of Janelia Farm.

This work was supported by the National Institute of Child Health and Human Development (R01HD37047) and the Howard Hughes Medical Institute.

Citations: eLife, Jan-2015; R01HD37047

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>