Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool better protects beachgoers from harmful bacteria levels

11.06.2015

Scientists offer more accurate health risk prediction model to better inform beach closure decisions

An international team, led by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, has developed a new, timelier method to identify harmful bacteria levels on recreational beaches. The new model provides beach managers with a better prediction tool to identify when closures are required to protect beachgoers from harmful contaminates in the water.


This infographic shows a microscopic view of beach water.

Credit: Feng, et. al.

"The development of this new model has allowed us, for the first time, to estimate contamination levels on beaches subject to nonpoint source pollution, in particular from beach sand and runoff from storms," said the study's authors.

The new method provides beach health managers with an easily accessible computer model to predict harmful bacteria levels from all potential pollution sources. The team optimized and validated their model using a 10-day monitoring dataset from the popular Virginia Beach in Miami, Florida. The predictive model uses information on waves, tides, rainfall and solar radiation to more accurately predict harmful bacteria concentration and movement along the shore allowing for improved beach management decision-making.

Federal and state laws require water monitoring of fecal indicator bacteria, such as enterococci and fecal coliform, at recreational beaches to protect beachgoers from harmful water contamination levels. Excess levels of these harmful bacteria prompt beach advisories and closures to minimize human health risks. Water contamination from fecal indicator bacteria can result from "point-source" pollution, such as a sewage outfall, or "nonpoint source" pollution from storm-water runoff, or animal and human inputs.

Current methods assess fecal bacteria contamination levels by direct sampling of water from beaches, as well as by using complex computer modeling. Direct sampling methods requires a one-day laboratory analysis to access the health risk to humans at a particular beach. Therefore, a 24 to 48 hours wait period after sampling is required before any beach closure or advisory is issued. In addition, the current computer-based model requires high computing power, which is often inaccessible to beach closure decision managers, and can only predict contaminates from known sources of pollution, such as sewage outfalls.

The National Science Foundation-funded study, titled "A predictive model for microbial counts on beaches where intertidal sand is a primary source," was published in the May 15 issue of the journal Marine Pollution Bulletin. The co-authors include: UM Rosenstiel School alumnus Zhixuan Feng of Woods Hole Oceanographic Institution; Ad Renier, Brian K. Haus, and John D. Wang of the UM Rosenstiel School of Marine and Atmospheric Science; Helena M. Solo-Gabriele of the UM School of Engineering; Lora E. Fleming of the university of Exeter Medical School. NSF Awards: OCE-0432368, OCE-0911373, OCE-1127813

###

About the University of Miami's Rosenstiel School

The University of Miami is one of the largest private research institutions in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, visit: http://www.rsmas.miami.edu.

Diana Udel | EurekAlert!

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>